-
1 basic way
Программирование: основной метод -
2 wraparound-way construction
English-Russian big polytechnic dictionary > wraparound-way construction
-
3 Jacquard, Joseph-Marie
SUBJECT AREA: Textiles[br]b. 7 July 1752 Lyons, Franced. 7 August 1834 Oullines, France[br]French developer of the apparatus named after him and used for selecting complicated patterns in weaving.[br]Jacquard was apprenticed at the age of 12 to bookbinding, and later to type-founding and cutlery. His parents, who had some connection with weaving, left him a small property upon their death. He made some experiments with pattern weaving, but lost all his inheritance; after marrying, he returned to type-founding and cutlery. In 1790 he formed the idea for his machine, but it was forgotten amidst the excitement of the French Revolution, in which he fought for the Revolutionists at the defence of Lyons. The machine he completed in 1801 combined earlier inventions and was for weaving net. He was sent to Paris to demonstrate it at the National Exposition and received a bronze medal. In 1804 Napoleon granted him a patent, a pension of 1,500 francs and a premium on each machine sold. This enabled him to study and work at the Conservatoire des Arts et Métiers to perfect his mechanism for pattern weaving. A method of selecting any combination of leashes at each shoot of the weft had to be developed, and Jacquard's mechanism was the outcome of various previous inventions. By taking the cards invented by Falcon in 1728 that were punched with holes like the paper of Bouchon in 1725, to select the needles for each pick, and by placing the apparatus above the loom where Vaucanson had put his mechanism, Jacquard combined the best features of earlier inventions. He was not entirely successful because his invention failed in the way it pressed the card against the needles; later modifications by Breton in 1815 and Skola in 1819 were needed before it functioned reliably. However, the advantage of Jacquard's machine was that each pick could be selected much more quickly than on the earlier draw looms, which meant that John Kay's flying shuttle could be introduced on fine pattern looms because the weaver no longer had to wait for the drawboy to sort out the leashes for the next pick. Robert Kay's drop box could also be used with different coloured wefts. The drawboy could be dispensed with because the foot-pedal operating the Jacquard mechanism could be worked by the weaver. Patterns could be changed quickly by replacing one set of cards with another, but the scope of the pattern was more limited than with the draw loom. Some machines that were brought into use aroused bitter hostility. Jacquard suffered physical violence, barely escaping with his life, and his machines were burnt by weavers at Lyons. However, by 1812 his mechanism began to be generally accepted and had been applied to 11,000 draw-looms in France. In 1819 Jacquard received a gold medal and a Cross of Honour for his invention. His machines reached England c.1816 and still remain the basic way of weaving complicated patterns.[br]Principal Honours and DistinctionsFrench Cross of Honour 1819. National Exposition Bronze Medal 1801.Further ReadingA.Barlow, 1878, The History and Principles of Weaving by Hand and by Power, London.C.Singer (ed.), 1958, A History of Technology, Vol. IV, Oxford: Clarendon Press.R.L.Hills, 1970, Power in the Industrial Revolution, Manchester (covers the introduction of pattern weaving and the power loom).RLH -
4 Historical Portugal
Before Romans described western Iberia or Hispania as "Lusitania," ancient Iberians inhabited the land. Phoenician and Greek trading settlements grew up in the Tagus estuary area and nearby coasts. Beginning around 202 BCE, Romans invaded what is today southern Portugal. With Rome's defeat of Carthage, Romans proceeded to conquer and rule the western region north of the Tagus, which they named Roman "Lusitania." In the fourth century CE, as Rome's rule weakened, the area experienced yet another invasion—Germanic tribes, principally the Suevi, who eventually were Christianized. During the sixth century CE, the Suevi kingdom was superseded by yet another Germanic tribe—the Christian Visigoths.A major turning point in Portugal's history came in 711, as Muslim armies from North Africa, consisting of both Arab and Berber elements, invaded the Iberian Peninsula from across the Straits of Gibraltar. They entered what is now Portugal in 714, and proceeded to conquer most of the country except for the far north. For the next half a millennium, Islam and Muslim presence in Portugal left a significant mark upon the politics, government, language, and culture of the country.Islam, Reconquest, and Portugal Created, 714-1140The long frontier struggle between Muslim invaders and Christian communities in the north of the Iberian peninsula was called the Reconquista (Reconquest). It was during this struggle that the first dynasty of Portuguese kings (Burgundian) emerged and the independent monarchy of Portugal was established. Christian forces moved south from what is now the extreme north of Portugal and gradually defeated Muslim forces, besieging and capturing towns under Muslim sway. In the ninth century, as Christian forces slowly made their way southward, Christian elements were dominant only in the area between Minho province and the Douro River; this region became known as "territorium Portu-calense."In the 11th century, the advance of the Reconquest quickened as local Christian armies were reinforced by crusading knights from what is now France and England. Christian forces took Montemor (1034), at the Mondego River; Lamego (1058); Viseu (1058); and Coimbra (1064). In 1095, the king of Castile and Léon granted the country of "Portu-cale," what became northern Portugal, to a Burgundian count who had emigrated from France. This was the foundation of Portugal. In 1139, a descendant of this count, Afonso Henriques, proclaimed himself "King of Portugal." He was Portugal's first monarch, the "Founder," and the first of the Burgundian dynasty, which ruled until 1385.The emergence of Portugal in the 12th century as a separate monarchy in Iberia occurred before the Christian Reconquest of the peninsula. In the 1140s, the pope in Rome recognized Afonso Henriques as king of Portugal. In 1147, after a long, bloody siege, Muslim-occupied Lisbon fell to Afonso Henriques's army. Lisbon was the greatest prize of the 500-year war. Assisting this effort were English crusaders on their way to the Holy Land; the first bishop of Lisbon was an Englishman. When the Portuguese captured Faro and Silves in the Algarve province in 1248-50, the Reconquest of the extreme western portion of the Iberian peninsula was complete—significantly, more than two centuries before the Spanish crown completed the Reconquest of the eastern portion by capturing Granada in 1492.Consolidation and Independence of Burgundian Portugal, 1140-1385Two main themes of Portugal's early existence as a monarchy are the consolidation of control over the realm and the defeat of a Castil-ian threat from the east to its independence. At the end of this period came the birth of a new royal dynasty (Aviz), which prepared to carry the Christian Reconquest beyond continental Portugal across the straits of Gibraltar to North Africa. There was a variety of motives behind these developments. Portugal's independent existence was imperiled by threats from neighboring Iberian kingdoms to the north and east. Politics were dominated not only by efforts against the Muslims inPortugal (until 1250) and in nearby southern Spain (until 1492), but also by internecine warfare among the kingdoms of Castile, Léon, Aragon, and Portugal. A final comeback of Muslim forces was defeated at the battle of Salado (1340) by allied Castilian and Portuguese forces. In the emerging Kingdom of Portugal, the monarch gradually gained power over and neutralized the nobility and the Church.The historic and commonplace Portuguese saying "From Spain, neither a good wind nor a good marriage" was literally played out in diplomacy and war in the late 14th-century struggles for mastery in the peninsula. Larger, more populous Castile was pitted against smaller Portugal. Castile's Juan I intended to force a union between Castile and Portugal during this era of confusion and conflict. In late 1383, Portugal's King Fernando, the last king of the Burgundian dynasty, suddenly died prematurely at age 38, and the Master of Aviz, Portugal's most powerful nobleman, took up the cause of independence and resistance against Castile's invasion. The Master of Aviz, who became King João I of Portugal, was able to obtain foreign assistance. With the aid of English archers, Joao's armies defeated the Castilians in the crucial battle of Aljubarrota, on 14 August 1385, a victory that assured the independence of the Portuguese monarchy from its Castilian nemesis for several centuries.Aviz Dynasty and Portugal's First Overseas Empire, 1385-1580The results of the victory at Aljubarrota, much celebrated in Portugal's art and monuments, and the rise of the Aviz dynasty also helped to establish a new merchant class in Lisbon and Oporto, Portugal's second city. This group supported King João I's program of carrying the Reconquest to North Africa, since it was interested in expanding Portugal's foreign commerce and tapping into Muslim trade routes and resources in Africa. With the Reconquest against the Muslims completed in Portugal and the threat from Castile thwarted for the moment, the Aviz dynasty launched an era of overseas conquest, exploration, and trade. These efforts dominated Portugal's 15th and 16th centuries.The overseas empire and age of Discoveries began with Portugal's bold conquest in 1415 of the Moroccan city of Ceuta. One royal member of the 1415 expedition was young, 21-year-old Prince Henry, later known in history as "Prince Henry the Navigator." His part in the capture of Ceuta won Henry his knighthood and began Portugal's "Marvelous Century," during which the small kingdom was counted as a European and world power of consequence. Henry was the son of King João I and his English queen, Philippa of Lancaster, but he did not inherit the throne. Instead, he spent most of his life and his fortune, and that of the wealthy military Order of Christ, on various imperial ventures and on voyages of exploration down the African coast and into the Atlantic. While mythology has surrounded Henry's controversial role in the Discoveries, and this role has been exaggerated, there is no doubt that he played a vital part in the initiation of Portugal's first overseas empire and in encouraging exploration. He was naturally curious, had a sense of mission for Portugal, and was a strong leader. He also had wealth to expend; at least a third of the African voyages of the time were under his sponsorship. If Prince Henry himself knew little science, significant scientific advances in navigation were made in his day.What were Portugal's motives for this new imperial effort? The well-worn historical cliche of "God, Glory, and Gold" can only partly explain the motivation of a small kingdom with few natural resources and barely 1 million people, which was greatly outnumbered by the other powers it confronted. Among Portuguese objectives were the desire to exploit known North African trade routes and resources (gold, wheat, leather, weaponry, and other goods that were scarce in Iberia); the need to outflank the Muslim world in the Mediterranean by sailing around Africa, attacking Muslims en route; and the wish to ally with Christian kingdoms beyond Africa. This enterprise also involved a strategy of breaking the Venetian spice monopoly by trading directly with the East by means of discovering and exploiting a sea route around Africa to Asia. Besides the commercial motives, Portugal nurtured a strong crusading sense of Christian mission, and various classes in the kingdom saw an opportunity for fame and gain.By the time of Prince Henry's death in 1460, Portugal had gained control of the Atlantic archipelagos of the Azores and Madeiras, begun to colonize the Cape Verde Islands, failed to conquer the Canary Islands from Castile, captured various cities on Morocco's coast, and explored as far as Senegal, West Africa, down the African coast. By 1488, Bar-tolomeu Dias had rounded the Cape of Good Hope in South Africa and thereby discovered the way to the Indian Ocean.Portugal's largely coastal African empire and later its fragile Asian empire brought unexpected wealth but were purchased at a high price. Costs included wars of conquest and defense against rival powers, manning the far-flung navel and trade fleets and scattered castle-fortresses, and staffing its small but fierce armies, all of which entailed a loss of skills and population to maintain a scattered empire. Always short of capital, the monarchy became indebted to bankers. There were many defeats beginning in the 16th century at the hands of the larger imperial European monarchies (Spain, France, England, and Holland) and many attacks on Portugal and its strung-out empire. Typically, there was also the conflict that arose when a tenuously held world empire that rarely if ever paid its way demanded finance and manpower Portugal itself lacked.The first 80 years of the glorious imperial era, the golden age of Portugal's imperial power and world influence, was an African phase. During 1415-88, Portuguese navigators and explorers in small ships, some of them caravelas (caravels), explored the treacherous, disease-ridden coasts of Africa from Morocco to South Africa beyond the Cape of Good Hope. By the 1470s, the Portuguese had reached the Gulf of Guinea and, in the early 1480s, what is now Angola. Bartolomeu Dias's extraordinary voyage of 1487-88 to South Africa's coast and the edge of the Indian Ocean convinced Portugal that the best route to Asia's spices and Christians lay south, around the tip of southern Africa. Between 1488 and 1495, there was a hiatus caused in part by domestic conflict in Portugal, discussion of resources available for further conquests beyond Africa in Asia, and serious questions as to Portugal's capacity to reach beyond Africa. In 1495, King Manuel and his council decided to strike for Asia, whatever the consequences. In 1497-99, Vasco da Gama, under royal orders, made the epic two-year voyage that discovered the sea route to western India (Asia), outflanked Islam and Venice, and began Portugal's Asian empire. Within 50 years, Portugal had discovered and begun the exploitation of its largest colony, Brazil, and set up forts and trading posts from the Middle East (Aden and Ormuz), India (Calicut, Goa, etc.), Malacca, and Indonesia to Macau in China.By the 1550s, parts of its largely coastal, maritime trading post empire from Morocco to the Moluccas were under siege from various hostile forces, including Muslims, Christians, and Hindi. Although Moroccan forces expelled the Portuguese from the major coastal cities by 1550, the rival European monarchies of Castile (Spain), England, France, and later Holland began to seize portions of her undermanned, outgunned maritime empire.In 1580, Phillip II of Spain, whose mother was a Portuguese princess and who had a strong claim to the Portuguese throne, invaded Portugal, claimed the throne, and assumed control over the realm and, by extension, its African, Asian, and American empires. Phillip II filled the power vacuum that appeared in Portugal following the loss of most of Portugal's army and its young, headstrong King Sebastião in a disastrous war in Morocco. Sebastiao's death in battle (1578) and the lack of a natural heir to succeed him, as well as the weak leadership of the cardinal who briefly assumed control in Lisbon, led to a crisis that Spain's strong monarch exploited. As a result, Portugal lost its independence to Spain for a period of 60 years.Portugal under Spanish Rule, 1580-1640Despite the disastrous nature of Portugal's experience under Spanish rule, "The Babylonian Captivity" gave birth to modern Portuguese nationalism, its second overseas empire, and its modern alliance system with England. Although Spain allowed Portugal's weakened empire some autonomy, Spanish rule in Portugal became increasingly burdensome and unacceptable. Spain's ambitious imperial efforts in Europe and overseas had an impact on the Portuguese as Spain made greater and greater demands on its smaller neighbor for manpower and money. Portugal's culture underwent a controversial Castilianization, while its empire became hostage to Spain's fortunes. New rival powers England, France, and Holland attacked and took parts of Spain's empire and at the same time attacked Portugal's empire, as well as the mother country.Portugal's empire bore the consequences of being attacked by Spain's bitter enemies in what was a form of world war. Portuguese losses were heavy. By 1640, Portugal had lost most of its Moroccan cities as well as Ceylon, the Moluccas, and sections of India. With this, Portugal's Asian empire was gravely weakened. Only Goa, Damão, Diu, Bombay, Timor, and Macau remained and, in Brazil, Dutch forces occupied the northeast.On 1 December 1640, long commemorated as a national holiday, Portuguese rebels led by the duke of Braganza overthrew Spanish domination and took advantage of Spanish weakness following a more serious rebellion in Catalonia. Portugal regained independence from Spain, but at a price: dependence on foreign assistance to maintain its independence in the form of the renewal of the alliance with England.Restoration and Second Empire, 1640-1822Foreign affairs and empire dominated the restoration era and aftermath, and Portugal again briefly enjoyed greater European power and prestige. The Anglo-Portuguese Alliance was renewed and strengthened in treaties of 1642, 1654, and 1661, and Portugal's independence from Spain was underwritten by English pledges and armed assistance. In a Luso-Spanish treaty of 1668, Spain recognized Portugal's independence. Portugal's alliance with England was a marriage of convenience and necessity between two monarchies with important religious, cultural, and social differences. In return for legal, diplomatic, and trade privileges, as well as the use during war and peace of Portugal's great Lisbon harbor and colonial ports for England's navy, England pledged to protect Portugal and its scattered empire from any attack. The previously cited 17th-century alliance treaties were renewed later in the Treaty of Windsor, signed in London in 1899. On at least 10 different occasions after 1640, and during the next two centuries, England was central in helping prevent or repel foreign invasions of its ally, Portugal.Portugal's second empire (1640-1822) was largely Brazil-oriented. Portuguese colonization, exploitation of wealth, and emigration focused on Portuguese America, and imperial revenues came chiefly from Brazil. Between 1670 and 1740, Portugal's royalty and nobility grew wealthier on funds derived from Brazilian gold, diamonds, sugar, tobacco, and other crops, an enterprise supported by the Atlantic slave trade and the supply of African slave labor from West Africa and Angola. Visitors today can see where much of that wealth was invested: Portugal's rich legacy of monumental architecture. Meanwhile, the African slave trade took a toll in Angola and West Africa.In continental Portugal, absolutist monarchy dominated politics and government, and there was a struggle for position and power between the monarchy and other institutions, such as the Church and nobility. King José I's chief minister, usually known in history as the marquis of Pombal (ruled 1750-77), sharply suppressed the nobility and theChurch (including the Inquisition, now a weak institution) and expelled the Jesuits. Pombal also made an effort to reduce economic dependence on England, Portugal's oldest ally. But his successes did not last much beyond his disputed time in office.Beginning in the late 18th century, the European-wide impact of the French Revolution and the rise of Napoleon placed Portugal in a vulnerable position. With the monarchy ineffectively led by an insane queen (Maria I) and her indecisive regent son (João VI), Portugal again became the focus of foreign ambition and aggression. With England unable to provide decisive assistance in time, France—with Spain's consent—invaded Portugal in 1807. As Napoleon's army under General Junot entered Lisbon meeting no resistance, Portugal's royal family fled on a British fleet to Brazil, where it remained in exile until 1821. In the meantime, Portugal's overseas empire was again under threat. There was a power vacuum as the monarch was absent, foreign armies were present, and new political notions of liberalism and constitutional monarchy were exciting various groups of citizens.Again England came to the rescue, this time in the form of the armies of the duke of Wellington. Three successive French invasions of Portugal were defeated and expelled, and Wellington succeeded in carrying the war against Napoleon across the Portuguese frontier into Spain. The presence of the English army, the new French-born liberal ideas, and the political vacuum combined to create revolutionary conditions. The French invasions and the peninsular wars, where Portuguese armed forces played a key role, marked the beginning of a new era in politics.Liberalism and Constitutional Monarchy, 1822-1910During 1807-22, foreign invasions, war, and civil strife over conflicting political ideas gravely damaged Portugal's commerce, economy, and novice industry. The next terrible blow was the loss of Brazil in 1822, the jewel in the imperial crown. Portugal's very independence seemed to be at risk. In vain, Portugal sought to resist Brazilian independence by force, but in 1825 it formally acknowledged Brazilian independence by treaty.Portugal's slow recovery from the destructive French invasions and the "war of independence" was complicated by civil strife over the form of constitutional monarchy that best suited Portugal. After struggles over these issues between 1820 and 1834, Portugal settled somewhat uncertainly into a moderate constitutional monarchy whose constitution (Charter of 1826) lent it strong political powers to exert a moderating influence between the executive and legislative branches of the government. It also featured a new upper middle class based on land ownership and commerce; a Catholic Church that, although still important, lived with reduced privileges and property; a largely African (third) empire to which Lisbon and Oporto devoted increasing spiritual and material resources, starting with the liberal imperial plans of 1836 and 1851, and continuing with the work of institutions like the Lisbon Society of Geography (established 1875); and a mass of rural peasants whose bonds to the land weakened after 1850 and who began to immigrate in increasing numbers to Brazil and North America.Chronic military intervention in national politics began in 19th-century Portugal. Such intervention, usually commencing with coups or pronunciamentos (military revolts), was a shortcut to the spoils of political office and could reflect popular discontent as well as the power of personalities. An early example of this was the 1817 golpe (coup) attempt of General Gomes Freire against British military rule in Portugal before the return of King João VI from Brazil. Except for a more stable period from 1851 to 1880, military intervention in politics, or the threat thereof, became a feature of the constitutional monarchy's political life, and it continued into the First Republic and the subsequent Estado Novo.Beginning with the Regeneration period (1851-80), Portugal experienced greater political stability and economic progress. Military intervention in politics virtually ceased; industrialization and construction of railroads, roads, and bridges proceeded; two political parties (Regenerators and Historicals) worked out a system of rotation in power; and leading intellectuals sparked a cultural revival in several fields. In 19th-century literature, there was a new golden age led by such figures as Alexandre Herculano (historian), Eça de Queirós (novelist), Almeida Garrett (playwright and essayist), Antero de Quental (poet), and Joaquim Oliveira Martins (historian and social scientist). In its third overseas empire, Portugal attempted to replace the slave trade and slavery with legitimate economic activities; to reform the administration; and to expand Portuguese holdings beyond coastal footholds deep into the African hinterlands in West, West Central, and East Africa. After 1841, to some extent, and especially after 1870, colonial affairs, combined with intense nationalism, pressures for economic profit in Africa, sentiment for national revival, and the drift of European affairs would make or break Lisbon governments.Beginning with the political crisis that arose out of the "English Ultimatum" affair of January 1890, the monarchy became discredtted and identified with the poorly functioning government, political parties splintered, and republicanism found more supporters. Portugal participated in the "Scramble for Africa," expanding its African holdings, but failed to annex territory connecting Angola and Mozambique. A growing foreign debt and state bankruptcy as of the early 1890s damaged the constitutional monarchy's reputation, despite the efforts of King Carlos in diplomacy, the renewal of the alliance in the Windsor Treaty of 1899, and the successful if bloody colonial wars in the empire (1880-97). Republicanism proclaimed that Portugal's weak economy and poor society were due to two historic institutions: the monarchy and the Catholic Church. A republic, its stalwarts claimed, would bring greater individual liberty; efficient, if more decentralized government; and a stronger colonial program while stripping the Church of its role in both society and education.As the monarchy lost support and republicans became more aggressive, violence increased in politics. King Carlos I and his heir Luís were murdered in Lisbon by anarchist-republicans on 1 February 1908. Following a military and civil insurrection and fighting between monarchist and republican forces, on 5 October 1910, King Manuel II fled Portugal and a republic was proclaimed.First Parliamentary Republic, 1910-26Portugal's first attempt at republican government was the most unstable, turbulent parliamentary republic in the history of 20th-century Western Europe. During a little under 16 years of the republic, there were 45 governments, a number of legislatures that did not complete normal terms, military coups, and only one president who completed his four-year term in office. Portuguese society was poorly prepared for this political experiment. Among the deadly legacies of the monarchy were a huge public debt; a largely rural, apolitical, and illiterate peasant population; conflict over the causes of the country's misfortunes; and lack of experience with a pluralist, democratic system.The republic had some talented leadership but lacked popular, institutional, and economic support. The 1911 republican constitution established only a limited democracy, as only a small portion of the adult male citizenry was eligible to vote. In a country where the majority was Catholic, the republic passed harshly anticlerical laws, and its institutions and supporters persecuted both the Church and its adherents. During its brief disjointed life, the First Republic drafted important reform plans in economic, social, and educational affairs; actively promoted development in the empire; and pursued a liberal, generous foreign policy. Following British requests for Portugal's assistance in World War I, Portugal entered the war on the Allied side in March 1916 and sent armies to Flanders and Portuguese Africa. Portugal's intervention in that conflict, however, was too costly in many respects, and the ultimate failure of the republic in part may be ascribed to Portugal's World War I activities.Unfortunately for the republic, its time coincided with new threats to Portugal's African possessions: World War I, social and political demands from various classes that could not be reconciled, excessive military intervention in politics, and, in particular, the worst economic and financial crisis Portugal had experienced since the 16th and 17th centuries. After the original Portuguese Republican Party (PRP, also known as the "Democrats") splintered into three warring groups in 1912, no true multiparty system emerged. The Democrats, except for only one or two elections, held an iron monopoly of electoral power, and political corruption became a major issue. As extreme right-wing dictatorships elsewhere in Europe began to take power in Italy (1922), neighboring Spain (1923), and Greece (1925), what scant popular support remained for the republic collapsed. Backed by a right-wing coalition of landowners from Alentejo, clergy, Coimbra University faculty and students, Catholic organizations, and big business, career military officers led by General Gomes da Costa executed a coup on 28 May 1926, turned out the last republican government, and established a military government.The Estado Novo (New State), 1926-74During the military phase (1926-32) of the Estado Novo, professional military officers, largely from the army, governed and administered Portugal and held key cabinet posts, but soon discovered that the military possessed no magic formula that could readily solve the problems inherited from the First Republic. Especially during the years 1926-31, the military dictatorship, even with its political repression of republican activities and institutions (military censorship of the press, political police action, and closure of the republic's rowdy parliament), was characterized by similar weaknesses: personalism and factionalism; military coups and political instability, including civil strife and loss of life; state debt and bankruptcy; and a weak economy. "Barracks parliamentarism" was not an acceptable alternative even to the "Nightmare Republic."Led by General Óscar Carmona, who had replaced and sent into exile General Gomes da Costa, the military dictatorship turned to a civilian expert in finance and economics to break the budget impasse and bring coherence to the disorganized system. Appointed minister of finance on 27 April 1928, the Coimbra University Law School professor of economics Antônio de Oliveira Salazar (1889-1970) first reformed finance, helped balance the budget, and then turned to other concerns as he garnered extraordinary governing powers. In 1930, he was appointed interim head of another key ministry (Colonies) and within a few years had become, in effect, a civilian dictator who, with the military hierarchy's support, provided the government with coherence, a program, and a set of policies.For nearly 40 years after he was appointed the first civilian prime minister in 1932, Salazar's personality dominated the government. Unlike extreme right-wing dictators elsewhere in Europe, Salazar was directly appointed by the army but was never endorsed by a popular political party, street militia, or voter base. The scholarly, reclusive former Coimbra University professor built up what became known after 1932 as the Estado Novo ("New State"), which at the time of its overthrow by another military coup in 1974, was the longest surviving authoritarian regime in Western Europe. The system of Salazar and the largely academic and technocratic ruling group he gathered in his cabinets was based on the central bureaucracy of the state, which was supported by the president of the republic—always a senior career military officer, General Óscar Carmona (1928-51), General Craveiro Lopes (1951-58), and Admiral Américo Tómaz (1958-74)—and the complicity of various institutions. These included a rubber-stamp legislature called the National Assembly (1935-74) and a political police known under various names: PVDE (1932-45), PIDE (1945-69),and DGS (1969-74). Other defenders of the Estado Novo security were paramilitary organizations such as the National Republican Guard (GNR); the Portuguese Legion (PL); and the Portuguese Youth [Movement]. In addition to censorship of the media, theater, and books, there was political repression and a deliberate policy of depoliticization. All political parties except for the approved movement of regime loyalists, the União Nacional or (National Union), were banned.The most vigorous and more popular period of the New State was 1932-44, when the basic structures were established. Never monolithic or entirely the work of one person (Salazar), the New State was constructed with the assistance of several dozen top associates who were mainly academics from law schools, some technocrats with specialized skills, and a handful of trusted career military officers. The 1933 Constitution declared Portugal to be a "unitary, corporative Republic," and pressures to restore the monarchy were resisted. Although some of the regime's followers were fascists and pseudofascists, many more were conservative Catholics, integralists, nationalists, and monarchists of different varieties, and even some reactionary republicans. If the New State was authoritarian, it was not totalitarian and, unlike fascism in Benito Mussolini's Italy or Adolf Hitler's Germany, it usually employed the minimum of violence necessary to defeat what remained a largely fractious, incoherent opposition.With the tumultuous Second Republic and the subsequent civil war in nearby Spain, the regime felt threatened and reinforced its defenses. During what Salazar rightly perceived as a time of foreign policy crisis for Portugal (1936-45), he assumed control of the Ministry of Foreign Affairs. From there, he pursued four basic foreign policy objectives: supporting the Nationalist rebels of General Francisco Franco in the Spanish Civil War (1936-39) and concluding defense treaties with a triumphant Franco; ensuring that General Franco in an exhausted Spain did not enter World War II on the Axis side; maintaining Portuguese neutrality in World War II with a post-1942 tilt toward the Allies, including granting Britain and the United States use of bases in the Azores Islands; and preserving and protecting Portugal's Atlantic Islands and its extensive, if poor, overseas empire in Africa and Asia.During the middle years of the New State (1944-58), many key Salazar associates in government either died or resigned, and there was greater social unrest in the form of unprecedented strikes and clandestine Communist activities, intensified opposition, and new threatening international pressures on Portugal's overseas empire. During the earlier phase of the Cold War (1947-60), Portugal became a steadfast, if weak, member of the US-dominated North Atlantic Treaty Organization alliance and, in 1955, with American support, Portugal joined the United Nations (UN). Colonial affairs remained a central concern of the regime. As of 1939, Portugal was the third largest colonial power in the world and possessed territories in tropical Africa (Angola, Mozambique, Guinea-Bissau, and São Tomé and Príncipe Islands) and the remnants of its 16th-century empire in Asia (Goa, Damão, Diu, East Timor, and Macau). Beginning in the early 1950s, following the independence of India in 1947, Portugal resisted Indian pressures to decolonize Portuguese India and used police forces to discourage internal opposition in its Asian and African colonies.The later years of the New State (1958-68) witnessed the aging of the increasingly isolated but feared Salazar and new threats both at home and overseas. Although the regime easily overcame the brief oppositionist threat from rival presidential candidate General Humberto Delgado in the spring of 1958, new developments in the African and Asian empires imperiled the authoritarian system. In February 1961, oppositionists hijacked the Portuguese ocean liner Santa Maria and, in following weeks, African insurgents in northern Angola, although they failed to expel the Portuguese, gained worldwide media attention, discredited the New State, and began the 13-year colonial war. After thwarting a dissident military coup against his continued leadership, Salazar and his ruling group mobilized military repression in Angola and attempted to develop the African colonies at a faster pace in order to ensure Portuguese control. Meanwhile, the other European colonial powers (Britain, France, Belgium, and Spain) rapidly granted political independence to their African territories.At the time of Salazar's removal from power in September 1968, following a stroke, Portugal's efforts to maintain control over its colonies appeared to be successful. President Americo Tomás appointed Dr. Marcello Caetano as Salazar's successor as prime minister. While maintaining the New State's basic structures, and continuing the regime's essential colonial policy, Caetano attempted wider reforms in colonial administration and some devolution of power from Lisbon, as well as more freedom of expression in Lisbon. Still, a great deal of the budget was devoted to supporting the wars against the insurgencies in Africa. Meanwhile in Asia, Portuguese India had fallen when the Indian army invaded in December 1961. The loss of Goa was a psychological blow to the leadership of the New State, and of the Asian empire only East Timor and Macau remained.The Caetano years (1968-74) were but a hiatus between the waning Salazar era and a new regime. There was greater political freedom and rapid economic growth (5-6 percent annually to late 1973), but Caetano's government was unable to reform the old system thoroughly and refused to consider new methods either at home or in the empire. In the end, regime change came from junior officers of the professional military who organized the Armed Forces Movement (MFA) against the Caetano government. It was this group of several hundred officers, mainly in the army and navy, which engineered a largely bloodless coup in Lisbon on 25 April 1974. Their unexpected action brought down the 48-year-old New State and made possible the eventual establishment and consolidation of democratic governance in Portugal, as well as a reorientation of the country away from the Atlantic toward Europe.Revolution of Carnations, 1974-76Following successful military operations of the Armed Forces Movement against the Caetano government, Portugal experienced what became known as the "Revolution of Carnations." It so happened that during the rainy week of the military golpe, Lisbon flower shops were featuring carnations, and the revolutionaries and their supporters adopted the red carnation as the common symbol of the event, as well as of the new freedom from dictatorship. The MFA, whose leaders at first were mostly little-known majors and captains, proclaimed a three-fold program of change for the new Portugal: democracy; decolonization of the overseas empire, after ending the colonial wars; and developing a backward economy in the spirit of opportunity and equality. During the first 24 months after the coup, there was civil strife, some anarchy, and a power struggle. With the passing of the Estado Novo, public euphoria burst forth as the new provisional military government proclaimed the freedoms of speech, press, and assembly, and abolished censorship, the political police, the Portuguese Legion, Portuguese Youth, and other New State organizations, including the National Union. Scores of political parties were born and joined the senior political party, the Portuguese Community Party (PCP), and the Socialist Party (PS), founded shortly before the coup.Portugal's Revolution of Carnations went through several phases. There was an attempt to take control by radical leftists, including the PCP and its allies. This was thwarted by moderate officers in the army, as well as by the efforts of two political parties: the PS and the Social Democrats (PPD, later PSD). The first phase was from April to September 1974. Provisional president General Antonio Spínola, whose 1974 book Portugal and the Future had helped prepare public opinion for the coup, met irresistible leftist pressures. After Spinola's efforts to avoid rapid decolonization of the African empire failed, he resigned in September 1974. During the second phase, from September 1974 to March 1975, radical military officers gained control, but a coup attempt by General Spínola and his supporters in Lisbon in March 1975 failed and Spínola fled to Spain.In the third phase of the Revolution, March-November 1975, a strong leftist reaction followed. Farm workers occupied and "nationalized" 1.1 million hectares of farmland in the Alentejo province, and radical military officers in the provisional government ordered the nationalization of Portuguese banks (foreign banks were exempted), utilities, and major industries, or about 60 percent of the economic system. There were power struggles among various political parties — a total of 50 emerged—and in the streets there was civil strife among labor, military, and law enforcement groups. A constituent assembly, elected on 25 April 1975, in Portugal's first free elections since 1926, drafted a democratic constitution. The Council of the Revolution (CR), briefly a revolutionary military watchdog committee, was entrenched as part of the government under the constitution, until a later revision. During the chaotic year of 1975, about 30 persons were killed in political frays while unstable provisional governments came and went. On 25 November 1975, moderate military forces led by Colonel Ramalho Eanes, who later was twice elected president of the republic (1976 and 1981), defeated radical, leftist military groups' revolutionary conspiracies.In the meantime, Portugal's scattered overseas empire experienced a precipitous and unprepared decolonization. One by one, the former colonies were granted and accepted independence—Guinea-Bissau (September 1974), Cape Verde Islands (July 1975), and Mozambique (July 1975). Portugal offered to turn over Macau to the People's Republic of China, but the offer was refused then and later negotiations led to the establishment of a formal decolonization or hand-over date of 1999. But in two former colonies, the process of decolonization had tragic results.In Angola, decolonization negotiations were greatly complicated by the fact that there were three rival nationalist movements in a struggle for power. The January 1975 Alvor Agreement signed by Portugal and these three parties was not effectively implemented. A bloody civil war broke out in Angola in the spring of 1975 and, when Portuguese armed forces withdrew and declared that Angola was independent on 11 November 1975, the bloodshed only increased. Meanwhile, most of the white Portuguese settlers from Angola and Mozambique fled during the course of 1975. Together with African refugees, more than 600,000 of these retornados ("returned ones") went by ship and air to Portugal and thousands more to Namibia, South Africa, Brazil, Canada, and the United States.The second major decolonization disaster was in Portugal's colony of East Timor in the Indonesian archipelago. Portugal's capacity to supervise and control a peaceful transition to independence in this isolated, neglected colony was limited by the strength of giant Indonesia, distance from Lisbon, and Portugal's revolutionary disorder and inability to defend Timor. In early December 1975, before Portugal granted formal independence and as one party, FRETILIN, unilaterally declared East Timor's independence, Indonesia's armed forces invaded, conquered, and annexed East Timor. Indonesian occupation encountered East Timorese resistance, and a heavy loss of life followed. The East Timor question remained a contentious international issue in the UN, as well as in Lisbon and Jakarta, for more than 20 years following Indonesia's invasion and annexation of the former colony of Portugal. Major changes occurred, beginning in 1998, after Indonesia underwent a political revolution and allowed a referendum in East Timor to decide that territory's political future in August 1999. Most East Timorese chose independence, but Indonesian forces resisted that verdict untilUN intervention in September 1999. Following UN rule for several years, East Timor attained full independence on 20 May 2002.Consolidation of Democracy, 1976-2000After several free elections and record voter turnouts between 25 April 1975 and June 1976, civil war was averted and Portugal's second democratic republic began to stabilize. The MFA was dissolved, the military were returned to the barracks, and increasingly elected civilians took over the government of the country. The 1976 Constitution was revised several times beginning in 1982 and 1989, in order to reempha-size the principle of free enterprise in the economy while much of the large, nationalized sector was privatized. In June 1976, General Ram-alho Eanes was elected the first constitutional president of the republic (five-year term), and he appointed socialist leader Dr. Mário Soares as prime minister of the first constitutional government.From 1976 to 1985, Portugal's new system featured a weak economy and finances, labor unrest, and administrative and political instability. The difficult consolidation of democratic governance was eased in part by the strong currency and gold reserves inherited from the Estado Novo, but Lisbon seemed unable to cope with high unemployment, new debt, the complex impact of the refugees from Africa, world recession, and the agitation of political parties. Four major parties emerged from the maelstrom of 1974-75, except for the Communist Party, all newly founded. They were, from left to right, the Communists (PCP); the Socialists (PS), who managed to dominate governments and the legislature but not win a majority in the Assembly of the Republic; the Social Democrats (PSD); and the Christian Democrats (CDS). During this period, the annual growth rate was low (l-2 percent), and the nationalized sector of the economy stagnated.Enhanced economic growth, greater political stability, and more effective central government as of 1985, and especially 1987, were due to several developments. In 1977, Portugal applied for membership in the European Economic Community (EEC), now the European Union (EU) since 1993. In January 1986, with Spain, Portugal was granted membership, and economic and financial progress in the intervening years has been significantly influenced by the comparatively large investment, loans, technology, advice, and other assistance from the EEC. Low unemployment, high annual growth rates (5 percent), and moderate inflation have also been induced by the new political and administrative stability in Lisbon. Led by Prime Minister Cavaco Silva, an economist who was trained abroad, the PSD's strong organization, management, and electoral support since 1985 have assisted in encouraging economic recovery and development. In 1985, the PSD turned the PS out of office and won the general election, although they did not have an absolute majority of assembly seats. In 1986, Mário Soares was elected president of the republic, the first civilian to hold that office since the First Republic. In the elections of 1987 and 1991, however, the PSD was returned to power with clear majorities of over 50 percent of the vote.Although the PSD received 50.4 percent of the vote in the 1991 parliamentary elections and held a 42-seat majority in the Assembly of the Republic, the party began to lose public support following media revelations regarding corruption and complaints about Prime Minister Cavaco Silva's perceived arrogant leadership style. President Mário Soares voiced criticism of the PSD's seemingly untouchable majority and described a "tyranny of the majority." Economic growth slowed down. In the parliamentary elections of 1995 and the presidential election of 1996, the PSD's dominance ended for the time being. Prime Minister Antônio Guterres came to office when the PS won the October 1995 elections, and in the subsequent presidential contest, in January 1996, socialist Jorge Sampaio, the former mayor of Lisbon, was elected president of the republic, thus defeating Cavaco Silva's bid. Young and popular, Guterres moved the PS toward the center of the political spectrum. Under Guterres, the PS won the October 1999 parliamentary elections. The PS defeated the PSD but did not manage to win a clear, working majority of seats, and this made the PS dependent upon alliances with smaller parties, including the PCP.In the local elections in December 2001, the PSD's criticism of PS's heavy public spending allowed the PSD to take control of the key cities of Lisbon, Oporto, and Coimbra. Guterres resigned, and parliamentary elections were brought forward from 2004 to March 2002. The PSD won a narrow victory with 40 percent of the votes, and Jose Durão Barroso became prime minister. Having failed to win a majority of the seats in parliament forced the PSD to govern in coalition with the right-wing Popular Party (PP) led by Paulo Portas. Durão Barroso set about reducing government spending by cutting the budgets of local authorities, freezing civil service hiring, and reviving the economy by accelerating privatization of state-owned enterprises. These measures provoked a 24-hour strike by public-sector workers. Durão Barroso reacted with vows to press ahead with budget-cutting measures and imposed a wage freeze on all employees earning more than €1,000, which affected more than one-half of Portugal's work force.In June 2004, Durão Barroso was invited by Romano Prodi to succeed him as president of the European Commission. Durão Barroso accepted and resigned the prime ministership in July. Pedro Santana Lopes, the leader of the PSD, became prime minister. Already unpopular at the time of Durão Barroso's resignation, the PSD-led government became increasingly unpopular under Santana Lopes. A month-long delay in the start of the school year and confusion over his plan to cut taxes and raise public-sector salaries, eroded confidence even more. By November, Santana Lopes's government was so unpopular that President Jorge Sampaio was obliged to dissolve parliament and hold new elections, two years ahead of schedule.Parliamentary elections were held on 20 February 2005. The PS, which had promised the electorate disciplined and transparent governance, educational reform, the alleviation of poverty, and a boost in employment, won 45 percent of the vote and the majority of the seats in parliament. The leader of the PS, José Sôcrates became prime minister on 12 March 2005. In the regularly scheduled presidential elections held on 6 January 2006, the former leader of the PSD and prime minister, Aníbal Cavaco Silva, won a narrow victory and became president on 9 March 2006. With a mass protest, public teachers' strike, and street demonstrations in March 2008, Portugal's media, educational, and social systems experienced more severe pressures. With the spreading global recession beginning in September 2008, Portugal's economic and financial systems became more troubled.Owing to its geographic location on the southwestern most edge of continental Europe, Portugal has been historically in but not of Europe. Almost from the beginning of its existence in the 12th century as an independent monarchy, Portugal turned its back on Europe and oriented itself toward the Atlantic Ocean. After carving out a Christian kingdom on the western portion of the Iberian peninsula, Portuguese kings gradually built and maintained a vast seaborne global empire that became central to the way Portugal understood its individuality as a nation-state. While the creation of this empire allows Portugal to claim an unusual number of "firsts" or distinctions in world and Western history, it also retarded Portugal's economic, social, and political development. It can be reasonably argued that the Revolution of 25 April 1974 was the most decisive event in Portugal's long history because it finally ended Portugal's oceanic mission and view of itself as an imperial power. After the 1974 Revolution, Portugal turned away from its global mission and vigorously reoriented itself toward Europe. Contemporary Portugal is now both in and of Europe.The turn toward Europe began immediately after 25 April 1974. Portugal granted independence to its African colonies in 1975. It was admitted to the European Council and took the first steps toward accession to the European Economic Community (EEC) in 1976. On 28 March 1977, the Portuguese government officially applied for EEC membership. Because of Portugal's economic and social backwardness, which would require vast sums of EEC money to overcome, negotiations for membership were long and difficult. Finally, a treaty of accession was signed on 12 June 1985. Portugal officially joined the EEC (the European Union [EU] since 1993) on 1 January 1986. Since becoming a full-fledged member of the EU, Portugal has been steadily overcoming the economic and social underdevelopment caused by its imperial past and is becoming more like the rest of Europe.Membership in the EU has speeded up the structural transformation of Portugal's economy, which actually began during the Estado Novo. Investments made by the Estado Novo in Portugal's economy began to shift employment out of the agricultural sector, which, in 1950, accounted for 50 percent of Portugal's economically active population. Today, only 10 percent of the economically active population is employed in the agricultural sector (the highest among EU member states); 30 percent in the industrial sector (also the highest among EU member states); and 60 percent in the service sector (the lowest among EU member states). The economically active population numbers about 5,000,000 employed, 56 percent of whom are women. Women workers are the majority of the workforce in the agricultural and service sectors (the highest among the EU member states). The expansion of the service sector has been primarily in health care and education. Portugal has had the lowest unemployment rates among EU member states, with the overall rate never being more than 10 percent of the active population. Since joining the EU, the number of employers increased from 2.6 percent to 5.8 percent of the active population; self-employed from 16 to 19 percent; and employees from 65 to 70 percent. Twenty-six percent of the employers are women. Unemployment tends to hit younger workers in industry and transportation, women employed in domestic service, workers on short-term contracts, and poorly educated workers. Salaried workers earn only 63 percent of the EU average, and hourly workers only one-third to one-half of that earned by their EU counterparts. Despite having had the second highest growth of gross national product (GNP) per inhabitant (after Ireland) among EU member states, the above data suggest that while much has been accomplished in terms of modernizing the Portuguese economy, much remains to be done to bring Portugal's economy up to the level of the "average" EU member state.Membership in the EU has also speeded up changes in Portuguese society. Over the last 30 years, coastalization and urbanization have intensified. Fully 50 percent of Portuguese live in the coastal urban conurbations of Lisbon, Oporto, Braga, Aveiro, Coimbra, Viseu, Évora, and Faro. The Portuguese population is one of the oldest among EU member states (17.3 percent are 65 years of age or older) thanks to a considerable increase in life expectancy at birth (77.87 years for the total population, 74.6 years for men, 81.36 years for women) and one of the lowest birthrates (10.59 births/1,000) in Europe. Family size averages 2.8 persons per household, with the strict nuclear family (one or two generations) in which both parents work being typical. Common law marriages, cohabitating couples, and single-parent households are more and more common. The divorce rate has also increased. "Youth Culture" has developed. The young have their own meeting places, leisure-time activities, and nightlife (bars, clubs, and discos).All Portuguese citizens, whether they have contributed or not, have a right to an old-age pension, invalidity benefits, widowed persons' pension, as well as payments for disabilities, children, unemployment, and large families. There is a national minimum wage (€385 per month), which is low by EU standards. The rapid aging of Portugal's population has changed the ratio of contributors to pensioners to 1.7, the lowest in the EU. This has created deficits in Portugal's social security fund.The adult literacy rate is about 92 percent. Illiteracy is still found among the elderly. Although universal compulsory education up to grade 9 was achieved in 1980, only 21.2 percent of the population aged 25-64 had undergone secondary education, compared to an EU average of 65.7 percent. Portugal's higher education system currently consists of 14 state universities and 14 private universities, 15 state polytechnic institutions, one Catholic university, and one military academy. All in all, Portugal spends a greater percentage of its state budget on education than most EU member states. Despite this high level of expenditure, the troubled Portuguese education system does not perform well. Early leaving and repetition rates are among the highest among EU member states.After the Revolution of 25 April 1974, Portugal created a National Health Service, which today consists of 221 hospitals and 512 medical centers employing 33,751 doctors and 41,799 nurses. Like its education system, Portugal's medical system is inefficient. There are long waiting lists for appointments with specialists and for surgical procedures.Structural changes in Portugal's economy and society mean that social life in Portugal is not too different from that in other EU member states. A mass consumption society has been created. Televisions, telephones, refrigerators, cars, music equipment, mobile phones, and personal computers are commonplace. Sixty percent of Portuguese households possess at least one automobile, and 65 percent of Portuguese own their own home. Portuguese citizens are more aware of their legal rights than ever before. This has resulted in a trebling of the number of legal proceeding since 1960 and an eight-fold increase in the number of lawyers. In general, Portuguese society has become more permissive and secular; the Catholic Church and the armed forces are much less influential than in the past. Portugal's population is also much more culturally, religiously, and ethnically diverse, a consequence of the coming to Portugal of hundreds of thousands of immigrants, mainly from former African colonies.Portuguese are becoming more cosmopolitan and sophisticated through the impact of world media, the Internet, and the World Wide Web. A prime case in point came in the summer and early fall of 1999, with the extraordinary events in East Timor and the massive Portuguese popular responses. An internationally monitored referendum in East Timor, Portugal's former colony in the Indonesian archipelago and under Indonesian occupation from late 1975 to summer 1999, resulted in a vote of 78.5 percent for rejecting integration with Indonesia and for independence. When Indonesian prointegration gangs, aided by the Indonesian military, responded to the referendum with widespread brutality and threatened to reverse the verdict of the referendum, there was a spontaneous popular outpouring of protest in the cities and towns of Portugal. An avalanche of Portuguese e-mail fell on leaders and groups in the UN and in certain countries around the world as Portugal's diplomats, perhaps to compensate for the weak initial response to Indonesian armed aggression in 1975, called for the protection of East Timor as an independent state and for UN intervention to thwart Indonesian action. Using global communications networks, the Portuguese were able to mobilize UN and world public opinion against Indonesian actions and aided the eventual independence of East Timor on 20 May 2002.From the Revolution of 25 April 1974 until the 1990s, Portugal had a large number of political parties, one of the largest Communist parties in western Europe, frequent elections, and endemic cabinet instability. Since the 1990s, the number of political parties has been dramatically reduced and cabinet stability increased. Gradually, the Portuguese electorate has concentrated around two larger parties, the right-of-center Social Democrats (PSD) and the left-of-center Socialist (PS). In the 1980s, these two parties together garnered 65 percent of the vote and 70 percent of the seats in parliament. In 2005, these percentages had risen to 74 percent and 85 percent, respectively. In effect, Portugal is currently a two-party dominant system in which the two largest parties — PS and PSD—alternate in and out of power, not unlike the rotation of the two main political parties (the Regenerators and the Historicals) during the last decades (1850s to 1880s) of the liberal constitutional monarchy. As Portugal's democracy has consolidated, turnout rates for the eligible electorate have declined. In the 1970s, turnout was 85 percent. In Portugal's most recent parliamentary election (2005), turnout had fallen to 65 percent of the eligible electorate.Portugal has benefited greatly from membership in the EU, and whatever doubts remain about the price paid for membership, no Portuguese government in the near future can afford to sever this connection. The vast majority of Portuguese citizens see membership in the EU as a "good thing" and strongly believe that Portugal has benefited from membership. Only the Communist Party opposed membership because it reduces national sovereignty, serves the interests of capitalists not workers, and suffers from a democratic deficit. Despite the high level of support for the EU, Portuguese voters are increasingly not voting in elections for the European Parliament, however. Turnout for European Parliament elections fell from 40 percent of the eligible electorate in the 1999 elections to 38 percent in the 2004 elections.In sum, Portugal's turn toward Europe has done much to overcome its backwardness. However, despite the economic, social, and political progress made since 1986, Portugal has a long way to go before it can claim to be on a par with the level found even in Spain, much less the rest of western Europe. As Portugal struggles to move from underde-velopment, especially in the rural areas away from the coast, it must keep in mind the perils of too rapid modern development, which could damage two of its most precious assets: its scenery and environment. The growth and future prosperity of the economy will depend on the degree to which the government and the private sector will remain stewards of clean air, soil, water, and other finite resources on which the tourism industry depends and on which Portugal's world image as a unique place to visit rests. Currently, Portugal is investing heavily in renewable energy from solar, wind, and wave power in order to account for about 50 percent of its electricity needs by 2010. Portugal opened the world's largest solar power plant and the world's first commercial wave power farm in 2006.An American documentary film on Portugal produced in the 1970s described this little country as having "a Past in Search of a Future." In the years after the Revolution of 25 April 1974, it could be said that Portugal is now living in "a Present in Search of a Future." Increasingly, that future lies in Europe as an active and productive member of the EU. -
5 Bibliography
■ Aitchison, J. (1987). Noam Chomsky: Consensus and controversy. New York: Falmer Press.■ Anderson, J. R. (1980). Cognitive psychology and its implications. San Francisco: W. H. Freeman.■ Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.■ Anderson, J. R. (1995). Cognitive psychology and its implications (4th ed.). New York: W. H. Freeman.■ Archilochus (1971). In M. L. West (Ed.), Iambi et elegi graeci (Vol. 1). Oxford: Oxford University Press.■ Armstrong, D. M. (1990). The causal theory of the mind. In W. G. Lycan (Ed.), Mind and cognition: A reader (pp. 37-47). Cambridge, MA: Basil Blackwell. (Originally published in 1981 in The nature of mind and other essays, Ithaca, NY: University Press).■ Atkins, P. W. (1992). Creation revisited. Oxford: W. H. Freeman & Company.■ Austin, J. L. (1962). How to do things with words. Cambridge, MA: Harvard University Press.■ Bacon, F. (1878). Of the proficience and advancement of learning divine and human. In The works of Francis Bacon (Vol. 1). Cambridge, MA: Hurd & Houghton.■ Bacon, R. (1928). Opus majus (Vol. 2). R. B. Burke (Trans.). Philadelphia, PA: University of Pennsylvania Press.■ Bar-Hillel, Y. (1960). The present status of automatic translation of languages. In F. L. Alt (Ed.), Advances in computers (Vol. 1). New York: Academic Press.■ Barr, A., & E. A. Feigenbaum (Eds.) (1981). The handbook of artificial intelligence (Vol. 1). Reading, MA: Addison-Wesley.■ Barr, A., & E. A. Feigenbaum (Eds.) (1982). The handbook of artificial intelligence (Vol. 2). Los Altos, CA: William Kaufman.■ Barron, F. X. (1963). The needs for order and for disorder as motives in creative activity. In C. W. Taylor & F. X. Barron (Eds.), Scientific creativity: Its rec ognition and development (pp. 153-160). New York: Wiley.■ Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge: Cambridge University Press.■ Bartley, S. H. (1969). Principles of perception. London: Harper & Row.■ Barzun, J. (1959). The house of intellect. New York: Harper & Row.■ Beach, F. A., D. O. Hebb, C. T. Morgan & H. W. Nissen (Eds.) (1960). The neu ropsychology of Lashley. New York: McGraw-Hill.■ Berkeley, G. (1996). Principles of human knowledge: Three Dialogues. Oxford: Oxford University Press. (Originally published in 1710.)■ Berlin, I. (1953). The hedgehog and the fox: An essay on Tolstoy's view of history. NY: Simon & Schuster.■ Bierwisch, J. (1970). Semantics. In J. Lyons (Ed.), New horizons in linguistics. Baltimore: Penguin Books.■ Black, H. C. (1951). Black's law dictionary. St. Paul, MN: West Publishing.■ Bloom, A. (1981). The linguistic shaping of thought: A study in the impact of language on thinking in China and the West. Hillsdale, NJ: Erlbaum.■ Bobrow, D. G., & D. A. Norman (1975). Some principles of memory schemata. In D. G. Bobrow & A. Collins (Eds.), Representation and understanding: Stud ies in Cognitive Science (pp. 131-149). New York: Academic Press.■ Boden, M. A. (1977). Artificial intelligence and natural man. New York: Basic Books.■ Boden, M. A. (1981). Minds and mechanisms. Ithaca, NY: Cornell University Press.■ Boden, M. A. (1990a). The creative mind: Myths and mechanisms. London: Cardinal.■ Boden, M. A. (1990b). The philosophy of artificial intelligence. Oxford: Oxford University Press.■ Boden, M. A. (1994). Precis of The creative mind: Myths and mechanisms. Behavioral and brain sciences 17, 519-570.■ Boden, M. (1996). Creativity. In M. Boden (Ed.), Artificial Intelligence (2nd ed.). San Diego: Academic Press.■ Bolter, J. D. (1984). Turing's man: Western culture in the computer age. Chapel Hill, NC: University of North Carolina Press.■ Bolton, N. (1972). The psychology of thinking. London: Methuen.■ Bourne, L. E. (1973). Some forms of cognition: A critical analysis of several papers. In R. Solso (Ed.), Contemporary issues in cognitive psychology (pp. 313324). Loyola Symposium on Cognitive Psychology (Chicago 1972). Washington, DC: Winston.■ Bransford, J. D., N. S. McCarrell, J. J. Franks & K. E. Nitsch (1977). Toward unexplaining memory. In R. Shaw & J. D. Bransford (Eds.), Perceiving, acting, and knowing (pp. 431-466). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Breger, L. (1981). Freud's unfinished journey. London: Routledge & Kegan Paul.■ Brehmer, B. (1986). In one word: Not from experience. In H. R. Arkes & K. Hammond (Eds.), Judgment and decision making: An interdisciplinary reader (pp. 705-719). Cambridge: Cambridge University Press.■ Bresnan, J. (1978). A realistic transformational grammar. In M. Halle, J. Bresnan & G. A. Miller (Eds.), Linguistic theory and psychological reality (pp. 1-59). Cambridge, MA: MIT Press.■ Brislin, R. W., W. J. Lonner & R. M. Thorndike (Eds.) (1973). Cross- cultural research methods. New York: Wiley.■ Bronowski, J. (1977). A sense of the future: Essays in natural philosophy. P. E. Ariotti with R. Bronowski (Eds.). Cambridge, MA: MIT Press.■ Bronowski, J. (1978). The origins of knowledge and imagination. New Haven, CT: Yale University Press.■ Brown, R. O. (1973). A first language: The early stages. Cambridge, MA: Harvard University Press.■ Brown, T. (1970). Lectures on the philosophy of the human mind. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 330-387). New York: Random House/Modern Library.■ Bruner, J. S., J. Goodnow & G. Austin (1956). A study of thinking. New York: Wiley.■ Calvin, W. H. (1990). The cerebral symphony: Seashore reflections on the structure of consciousness. New York: Bantam.■ Campbell, J. (1982). Grammatical man: Information, entropy, language, and life. New York: Simon & Schuster.■ Campbell, J. (1989). The improbable machine. New York: Simon & Schuster.■ Carlyle, T. (1966). On heroes, hero- worship and the heroic in history. Lincoln: University of Nebraska Press. (Originally published in 1841.)■ Carnap, R. (1959). The elimination of metaphysics through logical analysis of language [Ueberwindung der Metaphysik durch logische Analyse der Sprache]. In A. J. Ayer (Ed.), Logical positivism (pp. 60-81) A. Pap (Trans). New York: Free Press. (Originally published in 1932.)■ Cassirer, E. (1946). Language and myth. New York: Harper and Brothers. Reprinted. New York: Dover Publications, 1953.■ Cattell, R. B., & H. J. Butcher (1970). Creativity and personality. In P. E. Vernon (Ed.), Creativity. Harmondsworth, England: Penguin Books.■ Caudill, M., & C. Butler (1990). Naturally intelligent systems. Cambridge, MA: MIT Press/Bradford Books.■ Chandrasekaran, B. (1990). What kind of information processing is intelligence? A perspective on AI paradigms and a proposal. In D. Partridge & R. Wilks (Eds.), The foundations of artificial intelligence: A sourcebook (pp. 14-46). Cambridge: Cambridge University Press.■ Charniak, E., & McDermott, D. (1985). Introduction to artificial intelligence. Reading, MA: Addison-Wesley.■ Chase, W. G., & H. A. Simon (1988). The mind's eye in chess. In A. Collins & E. E. Smith (Eds.), Readings in cognitive science: A perspective from psychology and artificial intelligence (pp. 461-493). San Mateo, CA: Kaufmann.■ Cheney, D. L., & R. M. Seyfarth (1990). How monkeys see the world: Inside the mind of another species. Chicago: University of Chicago Press.■ Chi, M.T.H., R. Glaser & E. Rees (1982). Expertise in problem solving. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (pp. 7-73). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Chomsky, N. (1957). Syntactic structures. The Hague: Mouton. Janua Linguarum.■ Chomsky, N. (1964). A transformational approach to syntax. In J. A. Fodor & J. J. Katz (Eds.), The structure of language: Readings in the philosophy of lan guage (pp. 211-245). Englewood Cliffs, NJ: Prentice-Hall.■ Chomsky, N. (1965). Aspects of the theory of syntax. Cambridge, MA: MIT Press.■ Chomsky, N. (1972). Language and mind (enlarged ed.). New York: Harcourt Brace Jovanovich.■ Chomsky, N. (1979). Language and responsibility. New York: Pantheon.■ Chomsky, N. (1986). Knowledge of language: Its nature, origin and use. New York: Praeger Special Studies.■ Churchland, P. (1979). Scientific realism and the plasticity of mind. New York: Cambridge University Press.■ Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge, MA: MIT Press.■ Churchland, P. S. (1986). Neurophilosophy. Cambridge, MA: MIT Press/Bradford Books.■ Clark, A. (1996). Philosophical Foundations. In M. A. Boden (Ed.), Artificial in telligence (2nd ed.). San Diego: Academic Press.■ Clark, H. H., & T. B. Carlson (1981). Context for comprehension. In J. Long & A. Baddeley (Eds.), Attention and performance (Vol. 9, pp. 313-330). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Clarke, A. C. (1984). Profiles of the future: An inquiry into the limits of the possible. New York: Holt, Rinehart & Winston.■ Claxton, G. (1980). Cognitive psychology: A suitable case for what sort of treatment? In G. Claxton (Ed.), Cognitive psychology: New directions (pp. 1-25). London: Routledge & Kegan Paul.■ Code, M. (1985). Order and organism. Albany, NY: State University of New York Press.■ Collingwood, R. G. (1972). The idea of history. New York: Oxford University Press.■ Coopersmith, S. (1967). The antecedents of self- esteem. San Francisco: W. H. Freeman.■ Copland, A. (1952). Music and imagination. London: Oxford University Press.■ Coren, S. (1994). The intelligence of dogs. New York: Bantam Books.■ Cottingham, J. (Ed.) (1996). Western philosophy: An anthology. Oxford: Blackwell Publishers.■ Cox, C. (1926). The early mental traits of three hundred geniuses. Stanford, CA: Stanford University Press.■ Craik, K.J.W. (1943). The nature of explanation. Cambridge: Cambridge University Press.■ Cronbach, L. J. (1990). Essentials of psychological testing (5th ed.). New York: HarperCollins.■ Cronbach, L. J., & R. E. Snow (1977). Aptitudes and instructional methods. New York: Irvington. Paperback edition, 1981.■ Csikszentmihalyi, M. (1993). The evolving self. New York: Harper Perennial.■ Culler, J. (1976). Ferdinand de Saussure. New York: Penguin Books.■ Curtius, E. R. (1973). European literature and the Latin Middle Ages. W. R. Trask (Trans.). Princeton, NJ: Princeton University Press.■ D'Alembert, J.L.R. (1963). Preliminary discourse to the encyclopedia of Diderot. R. N. Schwab (Trans.). Indianapolis: Bobbs-Merrill.■ Dampier, W. C. (1966). A history of modern science. Cambridge: Cambridge University Press.■ Darwin, C. (1911). The life and letters of Charles Darwin (Vol. 1). Francis Darwin (Ed.). New York: Appleton.■ Davidson, D. (1970) Mental events. In L. Foster & J. W. Swanson (Eds.), Experience and theory (pp. 79-101). Amherst: University of Massachussetts Press.■ Davies, P. (1995). About time: Einstein's unfinished revolution. New York: Simon & Schuster/Touchstone.■ Davis, R., & J. J. King (1977). An overview of production systems. In E. Elcock & D. Michie (Eds.), Machine intelligence 8. Chichester, England: Ellis Horwood.■ Davis, R., & D. B. Lenat (1982). Knowledge- based systems in artificial intelligence. New York: McGraw-Hill.■ Dawkins, R. (1982). The extended phenotype: The gene as the unit of selection. Oxford: W. H. Freeman.■ deKleer, J., & J. S. Brown (1983). Assumptions and ambiguities in mechanistic mental models (1983). In D. Gentner & A. L. Stevens (Eds.), Mental modes (pp. 155-190). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Dennett, D. C. (1978a). Brainstorms: Philosophical essays on mind and psychology. Montgomery, VT: Bradford Books.■ Dennett, D. C. (1978b). Toward a cognitive theory of consciousness. In D. C. Dennett, Brainstorms: Philosophical Essays on Mind and Psychology. Montgomery, VT: Bradford Books.■ Dennett, D. C. (1995). Darwin's dangerous idea: Evolution and the meanings of life. New York: Simon & Schuster/Touchstone.■ Descartes, R. (1897-1910). Traite de l'homme. In Oeuvres de Descartes (Vol. 11, pp. 119-215). Paris: Charles Adam & Paul Tannery. (Originally published in 1634.)■ Descartes, R. (1950). Discourse on method. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1637.)■ Descartes, R. (1951). Meditation on first philosophy. L. J. Lafleur (Trans.). New York: Liberal Arts Press. (Originally published in 1641.)■ Descartes, R. (1955). The philosophical works of Descartes. E. S. Haldane and G.R.T. Ross (Trans.). New York: Dover. (Originally published in 1911 by Cambridge University Press.)■ Descartes, R. (1967). Discourse on method (Pt. V). In E. S. Haldane and G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 106-118). Cambridge: Cambridge University Press. (Originally published in 1637.)■ Descartes, R. (1970a). Discourse on method. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 181-200). Cambridge: Cambridge University Press. (Originally published in 1637.)■ Descartes, R. (1970b). Principles of philosophy. In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 1, pp. 178-291). Cambridge: Cambridge University Press. (Originally published in 1644.)■ Descartes, R. (1984). Meditations on first philosophy. In J. Cottingham, R. Stoothoff & D. Murduch (Trans.), The philosophical works of Descartes (Vol. 2). Cambridge: Cambridge University Press. (Originally published in 1641.)■ Descartes, R. (1986). Meditations on first philosophy. J. Cottingham (Trans.). Cambridge: Cambridge University Press. (Originally published in 1641 as Med itationes de prima philosophia.)■ deWulf, M. (1956). An introduction to scholastic philosophy. Mineola, NY: Dover Books.■ Dixon, N. F. (1981). Preconscious processing. London: Wiley.■ Doyle, A. C. (1986). The Boscombe Valley mystery. In Sherlock Holmes: The com plete novels and stories (Vol. 1). New York: Bantam.■ Dreyfus, H., & S. Dreyfus (1986). Mind over machine. New York: Free Press.■ Dreyfus, H. L. (1972). What computers can't do: The limits of artificial intelligence (revised ed.). New York: Harper & Row.■ Dreyfus, H. L., & S. E. Dreyfus (1986). Mind over machine: The power of human intuition and expertise in the era of the computer. New York: Free Press.■ Edelman, G. M. (1992). Bright air, brilliant fire: On the matter of the mind. New York: Basic Books.■ Ehrenzweig, A. (1967). The hidden order of art. London: Weidenfeld & Nicolson.■ Einstein, A., & L. Infeld (1938). The evolution of physics. New York: Simon & Schuster.■ Eisenstein, S. (1947). Film sense. New York: Harcourt, Brace & World.■ Everdell, W. R. (1997). The first moderns. Chicago: University of Chicago Press.■ Eysenck, M. W. (1977). Human memory: Theory, research and individual difference. Oxford: Pergamon.■ Eysenck, M. W. (1982). Attention and arousal: Cognition and performance. Berlin: Springer.■ Eysenck, M. W. (1984). A handbook of cognitive psychology. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Fancher, R. E. (1979). Pioneers of psychology. New York: W. W. Norton.■ Farrell, B. A. (1981). The standing of psychoanalysis. New York: Oxford University Press.■ Feldman, D. H. (1980). Beyond universals in cognitive development. Norwood, NJ: Ablex.■ Fetzer, J. H. (1996). Philosophy and cognitive science (2nd ed.). New York: Paragon House.■ Finke, R. A. (1990). Creative imagery: Discoveries and inventions in visualization. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Flanagan, O. (1991). The science of the mind. Cambridge MA: MIT Press/Bradford Books.■ Fodor, J. (1983). The modularity of mind. Cambridge, MA: MIT Press/Bradford Books.■ Frege, G. (1972). Conceptual notation. T. W. Bynum (Trans.). Oxford: Clarendon Press. (Originally published in 1879.)■ Frege, G. (1979). Logic. In H. Hermes, F. Kambartel & F. Kaulbach (Eds.), Gottlob Frege: Posthumous writings. Chicago: University of Chicago Press. (Originally published in 1879-1891.)■ Freud, S. (1959). Creative writers and day-dreaming. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 9, pp. 143-153). London: Hogarth Press.■ Freud, S. (1966). Project for a scientific psychology. In J. Strachey (Ed.), The stan dard edition of the complete psychological works of Sigmund Freud (Vol. 1, pp. 295-398). London: Hogarth Press. (Originally published in 1950 as Aus den AnfaЁngen der Psychoanalyse, in London by Imago Publishing.)■ Freud, S. (1976). Lecture 18-Fixation to traumas-the unconscious. In J. Strachey (Ed.), The standard edition of the complete psychological works of Sigmund Freud (Vol. 16, p. 285). London: Hogarth Press.■ Galileo, G. (1990). Il saggiatore [The assayer]. In S. Drake (Ed.), Discoveries and opinions of Galileo. New York: Anchor Books. (Originally published in 1623.)■ Gassendi, P. (1970). Letter to Descartes. In "Objections and replies." In E. S. Haldane & G.R.T. Ross (Eds.), The philosophical works of Descartes (Vol. 2, pp. 179-240). Cambridge: Cambridge University Press. (Originally published in 1641.)■ Gazzaniga, M. S. (1988). Mind matters: How mind and brain interact to create our conscious lives. Boston: Houghton Mifflin in association with MIT Press/Bradford Books.■ Genesereth, M. R., & N. J. Nilsson (1987). Logical foundations of artificial intelligence. Palo Alto, CA: Morgan Kaufmann.■ Ghiselin, B. (1952). The creative process. New York: Mentor.■ Ghiselin, B. (1985). The creative process. Berkeley, CA: University of California Press. (Originally published in 1952.)■ Gilhooly, K. J. (1996). Thinking: Directed, undirected and creative (3rd ed.). London: Academic Press.■ Glass, A. L., K. J. Holyoak & J. L. Santa (1979). Cognition. Reading, MA: AddisonWesley.■ Goody, J. (1977). The domestication of the savage mind. Cambridge: Cambridge University Press.■ Gruber, H. E. (1980). Darwin on man: A psychological study of scientific creativity (2nd ed.). Chicago: University of Chicago Press.■ Gruber, H. E., & S. Davis (1988). Inching our way up Mount Olympus: The evolving systems approach to creative thinking. In R. J. Sternberg (Ed.), The nature of creativity: Contemporary psychological perspectives. Cambridge: Cambridge University Press.■ Guthrie, E. R. (1972). The psychology of learning. New York: Harper. (Originally published in 1935.)■ Habermas, J. (1972). Knowledge and human interests. Boston: Beacon Press.■ Hadamard, J. (1945). The psychology of invention in the mathematical field. Princeton, NJ: Princeton University Press.■ Hand, D. J. (1985). Artificial intelligence and psychiatry. Cambridge: Cambridge University Press.■ Harris, M. (1981). The language myth. London: Duckworth.■ Haugeland, J. (Ed.) (1981). Mind design: Philosophy, psychology, artificial intelligence. Cambridge, MA: MIT Press/Bradford Books.■ Haugeland, J. (1981a). The nature and plausibility of cognitivism. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 243-281). Cambridge, MA: MIT Press.■ Haugeland, J. (1981b). Semantic engines: An introduction to mind design. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 1-34). Cambridge, MA: MIT Press/Bradford Books.■ Haugeland, J. (1985). Artificial intelligence: The very idea. Cambridge, MA: MIT Press.■ Hawkes, T. (1977). Structuralism and semiotics. Berkeley: University of California Press.■ Hebb, D. O. (1949). The organisation of behaviour. New York: Wiley.■ Hebb, D. O. (1958). A textbook of psychology. Philadelphia: Saunders.■ Hegel, G.W.F. (1910). The phenomenology of mind. J. B. Baille (Trans.). London: Sonnenschein. (Originally published as Phaenomenologie des Geistes, 1807.)■ Heisenberg, W. (1958). Physics and philosophy. New York: Harper & Row.■ Hempel, C. G. (1966). Philosophy of natural science. Englewood Cliffs, NJ: PrenticeHall.■ Herman, A. (1997). The idea of decline in Western history. New York: Free Press.■ Herrnstein, R. J., & E. G. Boring (Eds.) (1965). A source book in the history of psy chology. Cambridge, MA: Harvard University Press.■ Herzmann, E. (1964). Mozart's creative process. In P. H. Lang (Ed.), The creative world of Mozart (pp. 17-30). London: Oldbourne Press.■ Hilgard, E. R. (1957). Introduction to psychology. London: Methuen.■ Hobbes, T. (1651). Leviathan. London: Crooke.■ Holliday, S. G., & M. J. Chandler (1986). Wisdom: Explorations in adult competence. Basel, Switzerland: Karger.■ Horn, J. L. (1986). In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence (Vol. 3). Hillsdale, NJ: Erlbaum.■ Hull, C. (1943). Principles of behavior. New York: Appleton-Century-Crofts.■ Hume, D. (1955). An inquiry concerning human understanding. New York: Liberal Arts Press. (Originally published in 1748.)■ Hume, D. (1975). An enquiry concerning human understanding. In L. A. SelbyBigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (Spelling and punctuation revised.) (Originally published in 1748.)■ Hume, D. (1978). A treatise of human nature. L. A. Selby-Bigge (Ed.), Hume's enquiries (3rd. ed., revised P. H. Nidditch). Oxford: Clarendon. (With some modifications of spelling and punctuation.) (Originally published in 1690.)■ Hunt, E. (1973). The memory we must have. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language. (pp. 343-371) San Francisco: W. H. Freeman.■ Husserl, E. (1960). Cartesian meditations. The Hague: Martinus Nijhoff.■ Inhelder, B., & J. Piaget (1958). The growth of logical thinking from childhood to adolescence. New York: Basic Books. (Originally published in 1955 as De la logique de l'enfant a` la logique de l'adolescent. [Paris: Presses Universitaire de France])■ James, W. (1890a). The principles of psychology (Vol. 1). New York: Dover Books.■ James, W. (1890b). The principles of psychology. New York: Henry Holt.■ Jevons, W. S. (1900). The principles of science (2nd ed.). London: Macmillan.■ Johnson, G. (1986). Machinery of the mind: Inside the new science of artificial intelli gence. New York: Random House.■ Johnson-Laird, P. N. (1983). Mental models: Toward a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.■ Johnson-Laird, P. N. (1988). The computer and the mind: An introduction to cognitive science. Cambridge, MA: Harvard University Press.■ Jones, E. (1961). The life and work of Sigmund Freud. L. Trilling & S. Marcus (Eds.). London: Hogarth.■ Jones, R. V. (1985). Complementarity as a way of life. In A. P. French & P. J. Kennedy (Eds.), Niels Bohr: A centenary volume. Cambridge, MA: Harvard University Press.■ Kant, I. (1933). Critique of Pure Reason (2nd ed.). N. K. Smith (Trans.). London: Macmillan. (Originally published in 1781 as Kritik der reinen Vernunft.)■ Kant, I. (1891). Solution of the general problems of the Prolegomena. In E. Belfort (Trans.), Kant's Prolegomena. London: Bell. (With minor modifications.) (Originally published in 1783.)■ Katona, G. (1940). Organizing and memorizing: Studies in the psychology of learning and teaching. New York: Columbia University Press.■ Kaufman, A. S. (1979). Intelligent testing with the WISC-R. New York: Wiley.■ Koestler, A. (1964). The act of creation. New York: Arkana (Penguin).■ Kohlberg, L. (1971). From is to ought. In T. Mischel (Ed.), Cognitive development and epistemology. (pp. 151-235) New York: Academic Press.■ KoЁhler, W. (1925). The mentality of apes. New York: Liveright.■ KoЁhler, W. (1927). The mentality of apes (2nd ed.). Ella Winter (Trans.). London: Routledge & Kegan Paul.■ KoЁhler, W. (1930). Gestalt psychology. London: G. Bell.■ KoЁhler, W. (1947). Gestalt psychology. New York: Liveright.■ KoЁhler, W. (1969). The task of Gestalt psychology. Princeton, NJ: Princeton University Press.■ Kuhn, T. (1970). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.■ Langer, E. J. (1989). Mindfulness. Reading, MA: Addison-Wesley.■ Langer, S. (1962). Philosophical sketches. Baltimore: Johns Hopkins University Press.■ Langley, P., H. A. Simon, G. L. Bradshaw & J. M. Zytkow (1987). Scientific dis covery: Computational explorations of the creative process. Cambridge, MA: MIT Press.■ Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior, the Hixon Symposium (pp. 112-146) New York: Wiley.■ LeDoux, J. E., & W. Hirst (1986). Mind and brain: Dialogues in cognitive neuroscience. Cambridge: Cambridge University Press.■ Lehnert, W. (1978). The process of question answering. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Leiber, J. (1991). Invitation to cognitive science. Oxford: Blackwell.■ Lenat, D. B., & G. Harris (1978). Designing a rule system that searches for scientific discoveries. In D. A. Waterman & F. Hayes-Roth (Eds.), Pattern directed inference systems (pp. 25-52) New York: Academic Press.■ Levenson, T. (1995). Measure for measure: A musical history of science. New York: Touchstone. (Originally published in 1994.)■ Leґvi-Strauss, C. (1963). Structural anthropology. C. Jacobson & B. Grundfest Schoepf (Trans.). New York: Basic Books. (Originally published in 1958.)■ Levine, M. W., & J. M. Schefner (1981). Fundamentals of sensation and perception. London: Addison-Wesley.■ Lewis, C. I. (1946). An analysis of knowledge and valuation. LaSalle, IL: Open Court.■ Lighthill, J. (1972). A report on artificial intelligence. Unpublished manuscript, Science Research Council.■ Lipman, M., A. M. Sharp & F. S. Oscanyan (1980). Philosophy in the classroom. Philadelphia: Temple University Press.■ Lippmann, W. (1965). Public opinion. New York: Free Press. (Originally published in 1922.)■ Locke, J. (1956). An essay concerning human understanding. Chicago: Henry Regnery Co. (Originally published in 1690.)■ Locke, J. (1975). An essay concerning human understanding. P. H. Nidditch (Ed.). Oxford: Clarendon. (Originally published in 1690.) (With spelling and punctuation modernized and some minor modifications of phrasing.)■ Lopate, P. (1994). The art of the personal essay. New York: Doubleday/Anchor Books.■ Lorimer, F. (1929). The growth of reason. London: Kegan Paul. Machlup, F., & U. Mansfield (Eds.) (1983). The study of information. New York: Wiley.■ Manguel, A. (1996). A history of reading. New York: Viking.■ Markey, J. F. (1928). The symbolic process. London: Kegan Paul.■ Martin, R. M. (1969). On Ziff's "Natural and formal languages." In S. Hook (Ed.), Language and philosophy: A symposium (pp. 249-263). New York: New York University Press.■ Mazlish, B. (1993). The fourth discontinuity: the co- evolution of humans and machines. New Haven, CT: Yale University Press.■ McCarthy, J., & P. J. Hayes (1969). Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer & D. Michie (Eds.), Machine intelligence 4. Edinburgh: Edinburgh University Press.■ McClelland, J. L., D. E. Rumelhart & G. E. Hinton (1986). The appeal of parallel distributed processing. In D. E. Rumelhart, J. L. McClelland & the PDP Research Group (Eds.), Parallel distributed processing: Explorations in the mi crostructure of cognition (Vol. 1, pp. 3-40). Cambridge, MA: MIT Press/ Bradford Books.■ McCorduck, P. (1979). Machines who think. San Francisco: W. H. Freeman.■ McLaughlin, T. (1970). Music and communication. London: Faber & Faber.■ Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review 69, 431-436.■ Meehl, P. E., & C. J. Golden (1982). Taxometric methods. In Kendall, P. C., & Butcher, J. N. (Eds.), Handbook of research methods in clinical psychology (pp. 127-182). New York: Wiley.■ Mehler, J., E.C.T. Walker & M. Garrett (Eds.) (1982). Perspectives on mental rep resentation: Experimental and theoretical studies of cognitive processes and ca pacities. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Mill, J. S. (1900). A system of logic, ratiocinative and inductive: Being a connected view of the principles of evidence and the methods of scientific investigation. London: Longmans, Green.■ Miller, G. A. (1979, June). A very personal history. Talk to the Cognitive Science Workshop, Cambridge, MA.■ Miller, J. (1983). States of mind. New York: Pantheon Books.■ Minsky, M. (1975). A framework for representing knowledge. In P. H. Winston (Ed.), The psychology of computer vision (pp. 211-277). New York: McGrawHill.■ Minsky, M., & S. Papert (1973). Artificial intelligence. Condon Lectures, Oregon State System of Higher Education, Eugene, Oregon.■ Minsky, M. L. (1986). The society of mind. New York: Simon & Schuster.■ Mischel, T. (1976). Psychological explanations and their vicissitudes. In J. K. Cole & W. J. Arnold (Eds.), Nebraska Symposium on motivation (Vol. 23). Lincoln, NB: University of Nebraska Press.■ Morford, M.P.O., & R. J. Lenardon (1995). Classical mythology (5th ed.). New York: Longman.■ Murdoch, I. (1954). Under the net. New York: Penguin.■ Nagel, E. (1959). Methodological issues in psychoanalytic theory. In S. Hook (Ed.), Psychoanalysis, scientific method, and philosophy: A symposium. New York: New York University Press.■ Nagel, T. (1979). Mortal questions. London: Cambridge University Press.■ Nagel, T. (1986). The view from nowhere. Oxford: Oxford University Press.■ Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.■ Neisser, U. (1972). Changing conceptions of imagery. In P. W. Sheehan (Ed.), The function and nature of imagery (pp. 233-251). London: Academic Press.■ Neisser, U. (1976). Cognition and reality. San Francisco: W. H. Freeman.■ Neisser, U. (1978). Memory: What are the important questions? In M. M. Gruneberg, P. E. Morris & R. N. Sykes (Eds.), Practical aspects of memory (pp. 3-24). London: Academic Press.■ Neisser, U. (1979). The concept of intelligence. In R. J. Sternberg & D. K. Detterman (Eds.), Human intelligence: Perspectives on its theory and measurement (pp. 179-190). Norwood, NJ: Ablex.■ Nersessian, N. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In R. N. Giere (Ed.), Cognitive models of science (pp. 3-44). Minneapolis: University of Minnesota Press.■ Newell, A. (1973a). Artificial intelligence and the concept of mind. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 1-60). San Francisco: W. H. Freeman.■ Newell, A. (1973b). You can't play 20 questions with nature and win. In W. G. Chase (Ed.), Visual information processing (pp. 283-310). New York: Academic Press.■ Newell, A., & H. A. Simon (1963). GPS: A program that simulates human thought. In E. A. Feigenbaum & J. Feldman (Eds.), Computers and thought (pp. 279-293). New York & McGraw-Hill.■ Newell, A., & H. A. Simon (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.■ Nietzsche, F. (1966). Beyond good and evil. W. Kaufmann (Trans.). New York: Vintage. (Originally published in 1885.)■ Nilsson, N. J. (1971). Problem- solving methods in artificial intelligence. New York: McGraw-Hill.■ Nussbaum, M. C. (1978). Aristotle's Princeton University Press. De Motu Anamalium. Princeton, NJ:■ Oersted, H. C. (1920). Thermo-electricity. In Kirstine Meyer (Ed.), H. C. Oersted, Natuurvidenskabelige Skrifter (Vol. 2). Copenhagen: n.p. (Originally published in 1830 in The Edinburgh encyclopaedia.)■ Ong, W. J. (1982). Orality and literacy: The technologizing of the word. London: Methuen.■ Onians, R. B. (1954). The origins of European thought. Cambridge, MA: Cambridge University Press.■ Osgood, C. E. (1960). Method and theory in experimental psychology. New York: Oxford University Press. (Originally published in 1953.)■ Osgood, C. E. (1966). Language universals and psycholinguistics. In J. H. Greenberg (Ed.), Universals of language (2nd ed., pp. 299-322). Cambridge, MA: MIT Press.■ Palmer, R. E. (1969). Hermeneutics. Evanston, IL: Northwestern University Press.■ Peirce, C. S. (1934). Some consequences of four incapacities-Man, a sign. In C. Hartsborne & P. Weiss (Eds.), Collected papers of Charles Saunders Peirce (Vol. 5, pp. 185-189). Cambridge, MA: Harvard University Press.■ Penfield, W. (1959). In W. Penfield & L. Roberts, Speech and brain mechanisms. Princeton, NJ: Princeton University Press.■ Penrose, R. (1994). Shadows of the mind: A search for the missing science of conscious ness. Oxford: Oxford University Press.■ Perkins, D. N. (1981). The mind's best work. Cambridge, MA: Harvard University Press.■ Peterfreund, E. (1986). The heuristic approach to psychoanalytic therapy. In■ J. Reppen (Ed.), Analysts at work, (pp. 127-144). Hillsdale, NJ: Analytic Press.■ Piaget, J. (1952). The origin of intelligence in children. New York: International Universities Press. (Originally published in 1936.)■ Piaget, J. (1954). Le langage et les opeґrations intellectuelles. Proble` mes de psycho linguistique. Symposium de l'Association de Psychologie Scientifique de Langue Francёaise. Paris: Presses Universitaires de France.■ Piaget, J. (1977). Problems of equilibration. In H. E. Gruber & J. J. Voneche (Eds.), The essential Piaget (pp. 838-841). London: Routlege & Kegan Paul. (Originally published in 1975 as L'eґquilibration des structures cognitives [Paris: Presses Universitaires de France].)■ Piaget, J., & B. Inhelder. (1973). Memory and intelligence. New York: Basic Books.■ Pinker, S. (1994). The language instinct. New York: Morrow.■ Pinker, S. (1996). Facts about human language relevant to its evolution. In J.-P. Changeux & J. Chavaillon (Eds.), Origins of the human brain. A symposium of the Fyssen foundation (pp. 262-283). Oxford: Clarendon Press. Planck, M. (1949). Scientific autobiography and other papers. F. Gaynor (Trans.). New York: Philosophical Library.■ Planck, M. (1990). Wissenschaftliche Selbstbiographie. W. Berg (Ed.). Halle, Germany: Deutsche Akademie der Naturforscher Leopoldina.■ Plato (1892). Meno. In The Dialogues of Plato (B. Jowett, Trans.; Vol. 2). New York: Clarendon. (Originally published circa 380 B.C.)■ Poincareґ, H. (1913). Mathematical creation. In The foundations of science. G. B. Halsted (Trans.). New York: Science Press.■ Poincareґ, H. (1921). The foundations of science: Science and hypothesis, the value of science, science and method. G. B. Halstead (Trans.). New York: Science Press.■ Poincareґ, H. (1929). The foundations of science: Science and hypothesis, the value of science, science and method. New York: Science Press.■ Poincareґ, H. (1952). Science and method. F. Maitland (Trans.) New York: Dover.■ Polya, G. (1945). How to solve it. Princeton, NJ: Princeton University Press.■ Polanyi, M. (1958). Personal knowledge. London: Routledge & Kegan Paul.■ Popper, K. (1968). Conjectures and refutations: The growth of scientific knowledge. New York: Harper & Row/Basic Books.■ Popper, K., & J. Eccles (1977). The self and its brain. New York: Springer-Verlag.■ Popper, K. R. (1959). The logic of scientific discovery. London: Hutchinson.■ Putnam, H. (1975). Mind, language and reality: Philosophical papers (Vol. 2). Cambridge: Cambridge University Press.■ Putnam, H. (1987). The faces of realism. LaSalle, IL: Open Court.■ Pylyshyn, Z. W. (1981). The imagery debate: Analog media versus tacit knowledge. In N. Block (Ed.), Imagery (pp. 151-206). Cambridge, MA: MIT Press.■ Pylyshyn, Z. W. (1984). Computation and cognition: Towards a foundation for cog nitive science. Cambridge, MA: MIT Press/Bradford Books.■ Quillian, M. R. (1968). Semantic memory. In M. Minsky (Ed.), Semantic information processing (pp. 216-260). Cambridge, MA: MIT Press.■ Quine, W.V.O. (1960). Word and object. Cambridge, MA: Harvard University Press.■ Rabbitt, P.M.A., & S. Dornic (Eds.). Attention and performance (Vol. 5). London: Academic Press.■ Rawlins, G.J.E. (1997). Slaves of the Machine: The quickening of computer technology. Cambridge, MA: MIT Press/Bradford Books.■ Reid, T. (1970). An inquiry into the human mind on the principles of common sense. In R. Brown (Ed.), Between Hume and Mill: An anthology of British philosophy- 1749- 1843 (pp. 151-178). New York: Random House/Modern Library.■ Reitman, W. (1970). What does it take to remember? In D. A. Norman (Ed.), Models of human memory (pp. 470-510). London: Academic Press.■ Ricoeur, P. (1974). Structure and hermeneutics. In D. I. Ihde (Ed.), The conflict of interpretations: Essays in hermeneutics (pp. 27-61). Evanston, IL: Northwestern University Press.■ Robinson, D. N. (1986). An intellectual history of psychology. Madison: University of Wisconsin Press.■ Rorty, R. (1979). Philosophy and the mirror of nature. Princeton, NJ: Princeton University Press.■ Rosch, E. (1977). Human categorization. In N. Warren (Ed.), Studies in cross cultural psychology (Vol. 1, pp. 1-49) London: Academic Press.■ Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 27-48). Hillsdale, NJ: Lawrence Erlbaum Associates.■ Rosch, E., & B. B. Lloyd (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Rose, S. (1970). The chemistry of life. Baltimore: Penguin Books.■ Rose, S. (1976). The conscious brain (updated ed.). New York: Random House.■ Rose, S. (1993). The making of memory: From molecules to mind. New York: Anchor Books. (Originally published in 1992)■ Roszak, T. (1994). The cult of information: A neo- Luddite treatise on high- tech, artificial intelligence, and the true art of thinking (2nd ed.). Berkeley: University of California Press.■ Royce, J. R., & W. W. Rozeboom (Eds.) (1972). The psychology of knowing. New York: Gordon & Breach.■ Rumelhart, D. E. (1977). Introduction to human information processing. New York: Wiley.■ Rumelhart, D. E. (1980). Schemata: The building blocks of cognition. In R. J. Spiro, B. Bruce & W. F. Brewer (Eds.), Theoretical issues in reading comprehension. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Rumelhart, D. E., & J. L. McClelland (1986). On learning the past tenses of English verbs. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 2). Cambridge, MA: MIT Press.■ Rumelhart, D. E., P. Smolensky, J. L. McClelland & G. E. Hinton (1986). Schemata and sequential thought processes in PDP models. In J. L. McClelland, D. E. Rumelhart & the PDP Research Group (Eds.), Parallel Distributed Processing (Vol. 2, pp. 7-57). Cambridge, MA: MIT Press.■ Russell, B. (1927). An outline of philosophy. London: G. Allen & Unwin.■ Russell, B. (1961). History of Western philosophy. London: George Allen & Unwin.■ Russell, B. (1965). How I write. In Portraits from memory and other essays. London: Allen & Unwin.■ Russell, B. (1992). In N. Griffin (Ed.), The selected letters of Bertrand Russell (Vol. 1), The private years, 1884- 1914. Boston: Houghton Mifflin. Ryecroft, C. (1966). Psychoanalysis observed. London: Constable.■ Sagan, C. (1978). The dragons of Eden: Speculations on the evolution of human intel ligence. New York: Ballantine Books.■ Salthouse, T. A. (1992). Expertise as the circumvention of human processing limitations. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.■ Sanford, A. J. (1987). The mind of man: Models of human understanding. New Haven, CT: Yale University Press.■ Sapir, E. (1921). Language. New York: Harcourt, Brace, and World.■ Sapir, E. (1964). Culture, language, and personality. Berkeley: University of California Press. (Originally published in 1941.)■ Sapir, E. (1985). The status of linguistics as a science. In D. G. Mandelbaum (Ed.), Selected writings of Edward Sapir in language, culture and personality (pp. 160166). Berkeley: University of California Press. (Originally published in 1929).■ Scardmalia, M., & C. Bereiter (1992). Literate expertise. In K. A. Ericsson & J. Smith (Eds.), Toward a general theory of expertise: Prospects and limits (pp. 172-194). Cambridge: Cambridge University Press.■ Schafer, R. (1954). Psychoanalytic interpretation in Rorschach testing. New York: Grune & Stratten.■ Schank, R. C. (1973). Identification of conceptualizations underlying natural language. In R. C. Schank & K. M. Colby (Eds.), Computer models of thought and language (pp. 187-248). San Francisco: W. H. Freeman.■ Schank, R. C. (1976). The role of memory in language processing. In C. N. Cofer (Ed.), The structure of human memory. (pp. 162-189) San Francisco: W. H. Freeman.■ Schank, R. C. (1986). Explanation patterns: Understanding mechanically and creatively. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Schank, R. C., & R. P. Abelson (1977). Scripts, plans, goals, and understanding. Hillsdale, NJ: Lawrence Erlbaum Associates.■ SchroЁdinger, E. (1951). Science and humanism. Cambridge: Cambridge University Press.■ Searle, J. R. (1981a). Minds, brains, and programs. In J. Haugeland (Ed.), Mind design: Philosophy, psychology, artificial intelligence (pp. 282-306). Cambridge, MA: MIT Press.■ Searle, J. R. (1981b). Minds, brains and programs. In D. Hofstadter & D. Dennett (Eds.), The mind's I (pp. 353-373). New York: Basic Books.■ Searle, J. R. (1983). Intentionality. New York: Cambridge University Press.■ Serres, M. (1982). The origin of language: Biology, information theory, and thermodynamics. M. Anderson (Trans.). In J. V. Harari & D. F. Bell (Eds.), Hermes: Literature, science, philosophy (pp. 71-83). Baltimore: Johns Hopkins University Press.■ Simon, H. A. (1966). Scientific discovery and the psychology of problem solving. In R. G. Colodny (Ed.), Mind and cosmos: Essays in contemporary science and philosophy (pp. 22-40). Pittsburgh: University of Pittsburgh Press.■ Simon, H. A. (1979). Models of thought. New Haven, CT: Yale University Press.■ Simon, H. A. (1989). The scientist as a problem solver. In D. Klahr & K. Kotovsky (Eds.), Complex information processing: The impact of Herbert Simon. Hillsdale, N.J.: Lawrence Erlbaum Associates.■ Simon, H. A., & C. Kaplan (1989). Foundations of cognitive science. In M. Posner (Ed.), Foundations of cognitive science (pp. 1-47). Cambridge, MA: MIT Press.■ Simonton, D. K. (1988). Creativity, leadership and chance. In R. J. Sternberg (Ed.), The nature of creativity. Cambridge: Cambridge University Press.■ Skinner, B. F. (1974). About behaviorism. New York: Knopf.■ Smith, E. E. (1988). Concepts and thought. In J. Sternberg & E. E. Smith (Eds.), The psychology of human thought (pp. 19-49). Cambridge: Cambridge University Press.■ Smith, E. E. (1990). Thinking: Introduction. In D. N. Osherson & E. E. Smith (Eds.), Thinking. An invitation to cognitive science. (Vol. 3, pp. 1-2). Cambridge, MA: MIT Press.■ Socrates. (1958). Meno. In E. H. Warmington & P. O. Rouse (Eds.), Great dialogues of Plato W.H.D. Rouse (Trans.). New York: New American Library. (Original publication date unknown.)■ Solso, R. L. (1974). Theories of retrieval. In R. L. Solso (Ed.), Theories in cognitive psychology. Potomac, MD: Lawrence Erlbaum Associates.■ Spencer, H. (1896). The principles of psychology. New York: Appleton-CenturyCrofts.■ Steiner, G. (1975). After Babel: Aspects of language and translation. New York: Oxford University Press.■ Sternberg, R. J. (1977). Intelligence, information processing, and analogical reasoning. Hillsdale, NJ: Lawrence Erlbaum Associates.■ Sternberg, R. J. (1994). Intelligence. In R. J. Sternberg, Thinking and problem solving. San Diego: Academic Press.■ Sternberg, R. J., & J. E. Davidson (1985). Cognitive development in gifted and talented. In F. D. Horowitz & M. O'Brien (Eds.), The gifted and talented (pp. 103-135). Washington, DC: American Psychological Association.■ Storr, A. (1993). The dynamics of creation. New York: Ballantine Books. (Originally published in 1972.)■ Stumpf, S. E. (1994). Philosophy: History and problems (5th ed.). New York: McGraw-Hill.■ Sulloway, F. J. (1996). Born to rebel: Birth order, family dynamics, and creative lives. New York: Random House/Vintage Books.■ Thorndike, E. L. (1906). Principles of teaching. New York: A. G. Seiler.■ Thorndike, E. L. (1970). Animal intelligence: Experimental studies. Darien, CT: Hafner Publishing Co. (Originally published in 1911.)■ Titchener, E. B. (1910). A textbook of psychology. New York: Macmillan.■ Titchener, E. B. (1914). A primer of psychology. New York: Macmillan.■ Toulmin, S. (1957). The philosophy of science. London: Hutchinson.■ Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organisation of memory. London: Academic Press.■ Turing, A. (1946). In B. E. Carpenter & R. W. Doran (Eds.), ACE reports of 1946 and other papers. Cambridge, MA: MIT Press.■ Turkle, S. (1984). Computers and the second self: Computers and the human spirit. New York: Simon & Schuster.■ Tyler, S. A. (1978). The said and the unsaid: Mind, meaning, and culture. New York: Academic Press.■ van Heijenoort (Ed.) (1967). From Frege to Goedel. Cambridge: Harvard University Press.■ Varela, F. J. (1984). The creative circle: Sketches on the natural history of circularity. In P. Watzlawick (Ed.), The invented reality (pp. 309-324). New York: W. W. Norton.■ Voltaire (1961). On the Penseґs of M. Pascal. In Philosophical letters (pp. 119-146). E. Dilworth (Trans.). Indianapolis: Bobbs-Merrill.■ Wagman, M. (1991a). Artificial intelligence and human cognition: A theoretical inter comparison of two realms of intellect. Westport, CT: Praeger.■ Wagman, M. (1991b). Cognitive science and concepts of mind: Toward a general theory of human and artificial intelligence. Westport, CT: Praeger.■ Wagman, M. (1993). Cognitive psychology and artificial intelligence: Theory and re search in cognitive science. Westport, CT: Praeger.■ Wagman, M. (1995). The sciences of cognition: Theory and research in psychology and artificial intelligence. Westport, CT: Praeger.■ Wagman, M. (1996). Human intellect and cognitive science: Toward a general unified theory of intelligence. Westport, CT: Praeger.■ Wagman, M. (1997a). Cognitive science and the symbolic operations of human and artificial intelligence: Theory and research into the intellective processes. Westport, CT: Praeger.■ Wagman, M. (1997b). The general unified theory of intelligence: Central conceptions and specific application to domains of cognitive science. Westport, CT: Praeger.■ Wagman, M. (1998a). Cognitive science and the mind- body problem: From philosophy to psychology to artificial intelligence to imaging of the brain. Westport, CT: Praeger.■ Wagman, M. (1998b). Language and thought in humans and computers: Theory and research in psychology, artificial intelligence, and neural science. Westport, CT: Praeger.■ Wagman, M. (1998c). The ultimate objectives of artificial intelligence: Theoretical and research foundations, philosophical and psychological implications. Westport, CT: Praeger.■ Wagman, M. (1999). The human mind according to artificial intelligence: Theory, re search, and implications. Westport, CT: Praeger.■ Wagman, M. (2000). Scientific discovery processes in humans and computers: Theory and research in psychology and artificial intelligence. Westport, CT: Praeger.■ Wall, R. (1972). Introduction to mathematical linguistics. Englewood Cliffs, NJ: Prentice-Hall.■ Wallas, G. (1926). The Art of Thought. New York: Harcourt, Brace & Co.■ Wason, P. (1977). Self contradictions. In P. Johnson-Laird & P. Wason (Eds.), Thinking: Readings in cognitive science. Cambridge: Cambridge University Press.■ Wason, P. C., & P. N. Johnson-Laird. (1972). Psychology of reasoning: Structure and content. Cambridge, MA: Harvard University Press.■ Watson, J. (1930). Behaviorism. New York: W. W. Norton.■ Watzlawick, P. (1984). Epilogue. In P. Watzlawick (Ed.), The invented reality. New York: W. W. Norton, 1984.■ Weinberg, S. (1977). The first three minutes: A modern view of the origin of the uni verse. New York: Basic Books.■ Weisberg, R. W. (1986). Creativity: Genius and other myths. New York: W. H. Freeman.■ Weizenbaum, J. (1976). Computer power and human reason: From judgment to cal culation. San Francisco: W. H. Freeman.■ Wertheimer, M. (1945). Productive thinking. New York: Harper & Bros.■ Whitehead, A. N. (1925). Science and the modern world. New York: Macmillan.■ Whorf, B. L. (1956). In J. B. Carroll (Ed.), Language, thought and reality: Selected writings of Benjamin Lee Whorf. Cambridge, MA: MIT Press.■ Whyte, L. L. (1962). The unconscious before Freud. New York: Anchor Books.■ Wiener, N. (1954). The human use of human beings. Boston: Houghton Mifflin.■ Wiener, N. (1964). God & Golem, Inc.: A comment on certain points where cybernetics impinges on religion. Cambridge, MA: MIT Press.■ Winograd, T. (1972). Understanding natural language. New York: Academic Press.■ Winston, P. H. (1987). Artificial intelligence: A perspective. In E. L. Grimson & R. S. Patil (Eds.), AI in the 1980s and beyond (pp. 1-12). Cambridge, MA: MIT Press.■ Winston, P. H. (Ed.) (1975). The psychology of computer vision. New York: McGrawHill.■ Wittgenstein, L. (1953). Philosophical investigations. Oxford: Basil Blackwell.■ Wittgenstein, L. (1958). The blue and brown books. New York: Harper Colophon.■ Woods, W. A. (1975). What's in a link: Foundations for semantic networks. In D. G. Bobrow & A. Collins (Eds.), Representations and understanding: Studies in cognitive science (pp. 35-84). New York: Academic Press.■ Woodworth, R. S. (1938). Experimental psychology. New York: Holt; London: Methuen (1939).■ Wundt, W. (1904). Principles of physiological psychology (Vol. 1). E. B. Titchener (Trans.). New York: Macmillan.■ Wundt, W. (1907). Lectures on human and animal psychology. J. E. Creighton & E. B. Titchener (Trans.). New York: Macmillan.■ Young, J. Z. (1978). Programs of the brain. New York: Oxford University Press.■ Ziman, J. (1978). Reliable knowledge: An exploration of the grounds for belief in science. Cambridge: Cambridge University Press.Historical dictionary of quotations in cognitive science > Bibliography
-
6 talk
to:k
1. verb1) (to speak; to have a conversation or discussion: We talked about it for hours; My parrot can talk (= imitate human speech).) hablar2) (to gossip: You can't stay here - people will talk!) hablar, chismorrear3) (to talk about: They spent the whole time talking philosophy.) hablar (de/sobre)
2. noun1) ((sometimes in plural) a conversation or discussion: We had a long talk about it; The Prime Ministers met for talks on their countries' economic problems.) conversación2) (a lecture: The doctor gave us a talk on family health.) conferencia3) (gossip: Her behaviour causes a lot of talk among the neighbours.) comentario, chismorreo, cotilleo4) (useless discussion; statements of things a person says he will do but which will never actually be done: There's too much talk and not enough action.) palabra(s), palabreo, palabrería, charlatanería•- talking book
- talking head
- talking-point
- talk show
- talking-to
- talk back
- talk big
- talk down to
- talk someone into / out of doing
- talk into / out of doing
- talk someone into / out of
- talk into / out of
- talk over
- talk round
- talk sense/nonsense
- talk shop
talk1 n conversación / charlatalk2 vb hablartr[tɔːk]1 (gen) hablar (to, con/a)■ what were you talking about? ¿de qué hablabais?2 (negotiate) negociar3 (gossip) hablar, chismorrear1 hablar (about/of, de)1 (conversation) conversación nombre femenino2 (lecture) charla, conferencia1 negociaciones nombre femenino plural■ the management and the unions met for talks el patronal y los sindicatos se reuniron para negociar\SMALLIDIOMATIC EXPRESSION/SMALLit's just talk son cosas que se dicen, son rumoreslook who's talking quién lo dice, mira quién hablanot to have a clue what one is talking about no tener la menor idea de qué hablanow you're talking eso sí que me interesatalk about luck! ¡vaya suerte!talk of the devil hablando del rey de Roma, (por la puerta asoma)to be all talk (and no action) no hacer nada más que hablarto be the talk of the town ser la comidilla de todosto know what one is talking about hablar con conocimiento de causato talk big fanfarronear, farolear, presumir, exagerarto talk somebody into something convencer a alguien para que haga algoto talk somebody out of something disuadir a alguien de hacer algoto talk sense hablar con sentido comúnto talk shop hablar del trabajoto talk through one's hat decir tonterías, hablar sin pies ni cabezato talk turkey hablar a las claras, hablar con franquezayou can talk y tú que lo digaspillow talk conversación nombre femenino íntima (en la cama)talk show programa nombre masculino de entrevistastalk ['tɔk] vi1) : hablarhe talks for hours: se pasa horas hablando2) chat: charlar, platicartalk vt1) speak: hablarto talk French: hablar francésto talk business: hablar de negocios2) persuade: influenciar, convencershe talked me out of it: me convenció que no lo hiciera3)to talk over discuss: hablar de, discutirtalk n1) conversation: charla f, plática f, conversación f2) gossip, rumor: chisme m, rumores mpln.• charla s.f.• conferencia s.f.• habla s.f.• palabras s.f.pl.• parlatorio s.m.• plático s.m.v.• charlar v.• hablar v.• parlar v.• platicar v.
I
1. [tɔːk] intransitive verb1)stop talking! — ¡silencio!
he never stops talking — no para de hablar, habla hasta por los codos (fam)
you ate it all? talk about greedy! — (colloq) ¿te lo comiste todo? ¡hay que ser glotón!
for a basic kit you're talking about $900 — (colloq) para un equipo básico hay que pensar en unos 900 dólares
talking of which, how was your exam? — a propósito, ¿cómo te fue el examen?
you can talk! o you can't talk! o look who's talking! — (colloq) ¡mira quién habla!
- to talk OF something -INGnow you're talking! — (colloq) ¡así se habla!
- to talk TO somebody
- to talk WITH somebody
2)a) ( have discussion) hablaris there somewhere we can talk? — ¿podemos hablar en privado?b) ( give talk)c) ( gossip) hablar
2. vt1) ( speak) (colloq):to talk golf/economics — hablar de golf/economía
don't talk nonsense! — ¡no digas tonterías!
2) (argue, persuade)- to talk one's way out of/into something
- to talk oneself out of/into something
Phrasal Verbs:- talk through
II1) ca) ( conversation) conversación fI had a long talk with him — estuve hablando or (AmC, Méx tb) platicando un rato largo con él
b) ( lecture) charla fto give a talk about o on something — dar* una charla sobre algo
c) talks pl ( negotiations) conversaciones fpl, negociaciones fplto have o hold talks — mantener* or sostener* conversaciones
2) ua) (suggestion, rumor)there is talk of his retiring — se habla de que or corre la voz de que se va a jubilar
it was the talk of the town — (set phrase) era la comidilla del lugar
b) ( words) (colloq & pej) palabrería f (fam & pey), palabras fplit's just talk! — es pura palabrería (fam & pey), no son más que palabras
[tɔːk]to be all talk (and no action) — hablar mucho y no hacer* nada
1. N1) (=conversation) conversación f, charla f, plática f (Mex)•
to have a talk (with sb) — hablar (con algn), tener una conversación (con algn)•
we had a long talk over supper — hablamos largo y tendido durante la cena2) (=lecture) charla f•
to give a talk (on sth) — dar una charla (sobre algo)3) talks (=negotiations) (gen) conversaciones fpl, pláticas fpl (Mex); (with defined aim) negociaciones fplthe foreign secretary will be holding talks with his French counterpart — el ministro de asuntos exteriores mantendrá conversaciones con su homólogo francés
4) (=rumours) rumores mplthere is some talk of his resigning — se habla de or corren rumores sobre su posible dimisión
there's been a lot of talk about you two — se ha hablado mucho de vosotros dos, están circulando muchos rumores acerca de vosotros dos
any talk of divorce is just wild speculation — cualquier rumor acerca de un divorcio no es más que pura especulación
- be the talk of the town5) (=remarks)small 4.6) (=speech, language) lenguaje mchildren's talk — lenguaje m infantil or de niños
7) (=hot air) pej palabrería f, cuento mit's just talk — es pura palabrería, es todo cuento
he'll never give up smoking, he's all talk — nunca va a dejar de fumar, mucho hablar pero luego nada or no es más que un cuentista
he's all talk and no action — ¿ése? ¡mucho ruido y pocas nueces!, habla mucho pero no hace nada
2. VI1) (=speak) hablarcan you talk a little more slowly? — ¿podría hablar un poquito más despacio?
she never stops talking — no deja or para de hablar
•
I wasn't talking about you — no hablaba de tiwe're talking about a potentially enormous loss here — estamos hablando de una pérdida potencialmente enorme
talk about rich! he's absolutely loaded * — ¡vaya que si es rico! ¡está forrado! *
talk about a stroke of luck! * — ¡qué suerte!
•
to talk big — (fig) darse importancia, fanfarronear•
"and she's so untidy around the house" - "you can talk! or look who's talking!" — -y además, es tan desordenada en casa -¡mira quién habla! or -¡mira quién fue a hablar!•
now you're talking! — ¡así se habla!•
talking of films, have you seen...? — hablando de películas, ¿has visto...?•
don't talk to your mother like that! — ¡no le hables así a tu madre!•
the way you talk you'd think this was all my fault! — ¡oyéndote hablar cualquiera diría que toda la culpa es mía!- talk through one's hatdirty 2., 2)2) (=converse) hablar, platicar (Mex) (to con)stop talking! — ¡callaos!, ¡dejad de hablar!
who were you talking to on the phone just now? — ¿con quién hablabas (por teléfono) ahora mismo?
were you talking to me? — ¿me hablas a mí?
to talk to o.s. — hablar solo
•
to talk about sth/sb — hablar de algo/algn•
the sort of person who talks at you rather than to you — el tipo de persona que habla mucho pero no escucha nada•
to get talking — ponerse a hablar, entablar conversación•
to keep sb talking — dar charla a algn para entretenerlo, entretener a algn hablando•
it was easy to talk with her — era fácil hablar con ella3) (=have discussion) hablar, hablar seriamentethe two sides need to sit down and talk — las dos partes necesitan reunirse para hablar (seriamente)
the two companies are talking about a possible merger — las dos empresas están discutiendo or negociando una posible fusión
4) (=gossip) hablar ( about de)people will talk — la gente hablará or murmurará
5) (=lecture) dar una charla, hablar (about, on de, sobre)he'll be talking on his life in India — dará una charla sobre su vida en la India, hablará de or sobre su vida en la India
6) (=reveal information) hablar3. VT1) (=speak) hablar- talk the hind legs off a donkey2) (=discuss) hablar dewe were talking politics/business — hablábamos de política/negocios
- talk shop3) (=persuade)•
to talk sb into doing sth — convencer a algn de que haga algook! you've talked me into it — ¡vale! me has convencido
•
to talk sb out of doing sth — convencer a algn de que no haga algo, disuadir a algn de que haga algowe managed to talk him out of it — conseguimos convencerle de que no lo hiciera, conseguimos disuadirle de que lo hiciera
he performed so badly in the interview he talked himself out of the job — habló tan mal en la entrevista que consiguió que no le dieran el puesto
•
he managed to talk his way out of a prison sentence — habló de tal manera que no le condenaron a pena de cárcel4.CPDtalk radio N — radio f hablada
talk show N — (Rad, TV) programa m de entrevistas
talk time N — (on mobile phone) tiempo m de conversación
- talk on- talk out- talk up* * *
I
1. [tɔːk] intransitive verb1)stop talking! — ¡silencio!
he never stops talking — no para de hablar, habla hasta por los codos (fam)
you ate it all? talk about greedy! — (colloq) ¿te lo comiste todo? ¡hay que ser glotón!
for a basic kit you're talking about $900 — (colloq) para un equipo básico hay que pensar en unos 900 dólares
talking of which, how was your exam? — a propósito, ¿cómo te fue el examen?
you can talk! o you can't talk! o look who's talking! — (colloq) ¡mira quién habla!
- to talk OF something -INGnow you're talking! — (colloq) ¡así se habla!
- to talk TO somebody
- to talk WITH somebody
2)a) ( have discussion) hablaris there somewhere we can talk? — ¿podemos hablar en privado?b) ( give talk)c) ( gossip) hablar
2. vt1) ( speak) (colloq):to talk golf/economics — hablar de golf/economía
don't talk nonsense! — ¡no digas tonterías!
2) (argue, persuade)- to talk one's way out of/into something
- to talk oneself out of/into something
Phrasal Verbs:- talk through
II1) ca) ( conversation) conversación fI had a long talk with him — estuve hablando or (AmC, Méx tb) platicando un rato largo con él
b) ( lecture) charla fto give a talk about o on something — dar* una charla sobre algo
c) talks pl ( negotiations) conversaciones fpl, negociaciones fplto have o hold talks — mantener* or sostener* conversaciones
2) ua) (suggestion, rumor)there is talk of his retiring — se habla de que or corre la voz de que se va a jubilar
it was the talk of the town — (set phrase) era la comidilla del lugar
b) ( words) (colloq & pej) palabrería f (fam & pey), palabras fplit's just talk! — es pura palabrería (fam & pey), no son más que palabras
to be all talk (and no action) — hablar mucho y no hacer* nada
-
7 unit
1) сборочная единица; узел; блок2) установка; агрегат3) единица, единица измерения || единичный; удельный4) часть; секция || секционный•as a unit — 1) в сборе 2) как единая сборочная единица; как единый узел
unit under test — 1) объект контроля 2) объект диагностирования, объект технического диагностирования
- AC unit- actuating unit
- adapter plate unit
- adaptive control unit
- address and data interface unit
- address unit
- adjusting unit
- air-aspirating unit
- answer-back unit
- arithmetic unit
- arithmetic/logic unit
- arithmetical unit
- ASC unit
- assembly unit of N-order
- assembly unit
- audio response unit
- autoloading unit
- automatic calling unit
- auxiliary data translator unit
- availability control unit
- axis unit
- axis-processing unit
- balancer unit
- banking unit
- bar feed unit
- base assembly unit
- base unit
- basic information unit
- basic length unit
- basic logic unit
- batch control unit
- bearing unit
- behind-the-tape reader unit
- belt shuttle unit
- belt-driven shuttle unit
- bench-testing unit
- blemished unit
- bolt-on unit
- booster unit
- boring spindle unit
- boring unit
- boring-and-milling unit
- brake unit
- broach retriever unit
- broach-handling unit
- broken tool sensing unit
- buffer unit
- building-block machining unit
- bulk transfer unit
- business unit
- card punching unit
- carousel loading unit
- carousel unit
- carrier unit
- cartridge unit
- cellular unit
- center unit for machine frame
- central processing unit
- central processor unit
- chain storage unit
- changer unit
- changing unit
- check unit
- chiller unit
- chip disposal unit
- clamping unit
- claw unit
- CNC machining unit
- CNC standard unit
- CNC unit
- coating application unit
- coating removal unit
- coherent unit
- column unit
- combination valve unit
- command unit
- communications central processing unit
- complementary unit
- computerized numerical control unit
- condensing unit
- cone variable-speed friction drive unit
- console unit
- constant coefficient unit
- constant delay unit
- construction unit
- control unit
- controlling unit
- conveying unit
- conveyor unit
- coolant management unit
- coolant recovery unit
- coolant unit
- cooler unit
- cooling unit
- coordinate preprogramming unit
- copying unit
- correction unit
- cover unit
- CPC handling unit
- cross tapping unit
- cross-slide unit
- cutoff unit
- cutting unit
- D unit
- damping unit
- data preparation unit
- data transmission control unit
- deep hole boring unit
- delay unit
- derived unit
- detecting unit
- detection unit
- developing unit
- digital display unit
- digital readout unit
- digital unit
- dimension readout unit
- diode array unit
- disk-type variable-speed friction drive unit
- displacement unit
- display unit
- distance-keeping unit
- double-acting unit
- double-notching unit
- double-pump and combination unit
- double-pump unit
- double-reduction gear unit
- double-reduction right-angle reduction gear unit
- double-reduction twin gear unit
- double-reduction twin unit
- double-reduction wormgear unit
- double-spindle unit
- down-hole internal deburrer unit
- dresser unit
- dressing unit
- drill unit
- drilling and milling unit
- drilling spindle unit
- drilling unit
- drilling/tapping unit
- drive unit
- drive/feed unit
- DRO unit
- dual work pallet shuttle unit
- dual-head laser beam unit
- dust-collecting unit
- dust-removing unit
- dynamic unit
- EDM unit
- electrical machining units
- electromagnetic unit
- electron-beam unit
- entry level dedicated unit
- environmental compensation unit
- exchanger unit
- fabricated unit
- facing unit
- fan coil unit
- feed box unit
- feed change unit
- feed drive cartridge unit
- feed unit
- feedback unit
- feed-in boring unit
- feed-out boring unit
- fetch-and-carry unit
- filtration unit
- fine boring unit
- flexible spindle units
- flexible tray unit
- floor unit
- focusing unit
- free-standing unit
- free-wheel unit
- free-wheeling unit
- frontal variable-speed friction drive unit
- functional unit
- fundamental unit
- gage control unit
- gage indicating unit
- gage unit
- gaging unit
- gas turbine starter auxiliary power unit
- gear unit
- gearbox unit
- gear-reversing unit
- grasping unit
- grinding spindle unit
- gripper unit
- guide unit
- handling unit
- hardware/software add-on unit
- harmonic drive unit
- head unit
- headstock-type workpiece holding unit
- hoisting unit
- horizontal power unit
- horizontal way unit
- hydraulic clamping unit
- hydraulic feed unit
- hydraulic power unit
- hydraulic testing unit
- hydraulic unit
- hydrostatic bearing unit
- ICAM manufacturing unit
- ICAM unit
- icon-driven control unit
- indexer/fourth axis unit
- indexing head unit
- indexing platen unit
- indexing table unit
- indexing unit
- in-die tapping unit
- information retrieval unit
- information unit
- input batch control unit
- input unit
- input-output unit
- in-system unit
- integral unit
- interface unit
- intermediate storage unit
- interpolating unit
- inverting unit
- keyboard unit
- knee-type unit
- lapping and superfinishing unit
- laser beam composition unit
- laser beam unit
- laser processing unit
- laser unit
- laser-calibration unit
- laser-source unit
- lead screw tap unit
- lexical unit
- lift unit
- lift-and-carry unit
- light unit
- linear ball bearing unit
- linear drive unit
- linear screw unit
- linear slide roller bearing unit
- linear unit
- live storage unit
- load/unload unit
- loading unit
- loading-and-unloading unit
- logic unit
- logical unit
- lubricating pump unit
- machine control unit
- machine tool control unit
- machine tooling unit
- machine unit
- machine-dedicated unit
- machining center unit
- machining head unit
- machining unit
- magnetic pickup unit
- magnetic tape unit
- manned flexible unit
- marking unit
- master unit
- material-handling unit
- MDI unit
- measurement unit
- measuring unit
- memory unit
- message display unit
- microdispensing unit
- microprocessor correction unit
- microprocessor NC unit
- microprocessor unit
- microprocessor-based unit
- microprocessor-type NC unit
- middle-level 3-D representation unit
- milling spindle unit
- minicomputer control unit
- miniload AS/RS unit
- mist coolant unit
- miter saw unit
- mobile unit
- mobile work storage unit
- modular cell unit
- modular loading unit
- modular unit
- motor unit
- motor-reduction unit
- multichannel analyzer unit
- multidrill unit
- multiple screw-driving unit
- multiple-power path gear unit
- multiple-reduction gear unit
- multiple-reduction unit
- multiple-spindle torque unit
- multipurpose machining unit
- multispindle boring unit
- multitap unit
- NC data creation unit
- NC unit
- nested gear unit
- notching unit
- nutating unit
- off-machine unit
- off-system unit
- oil coalescer unit
- oil-filled feed unit
- one stage gear unit
- one stage unit
- on-machine unit
- operation unit
- operational unit
- operator-friendly program unit
- orientation transfer unit
- output batch control unit
- output unit
- overhead gantry unit
- overhead spindle unit
- pack unit
- pallet change unit
- pallet exchange unit
- pallet shuttle unit
- pallet-pool unit
- parallel-shaft reduction gear unit
- PC expansion board unit
- PC-based CAD unit
- pendant control unit
- pendant pushbutton control unit
- pendant unit
- peripheral control unit
- peripheral processing unit
- photo-eye tracing unit
- pick-and-place unit
- pickup unit
- piece-holding unit
- pilot unit
- placement unit
- planetary gear unit
- planetary reduction gearing unit
- plant unit
- plasma-arc unit
- plasmarc unit
- platen unit
- PLC unit
- plugboard input unit
- plugboard unit
- plug-in unit
- pneumatic unit
- portable unit
- power feed unit
- power supply unit
- power train unit
- power unit
- power-generating unit
- power-tooling unit
- practical correction unit
- practical unit
- presetting unit
- pressurized air bearing unit
- primary storage unit
- probe unit
- processing unit
- production unit
- program unit
- programming unit
- propulsion unit
- pulling unit
- pump unit
- pumping unit
- pump-motor unit
- quill feed cam unit
- quill spindle unit
- quill unit
- raster unit
- readout unit
- reducing unit
- reduction gear unit
- reduction gearing unit
- reduction unit
- reed make contact unit
- regulating unit
- remote display unit
- replacement unit
- retriever unit
- right-angle milling unit
- right-angled milling unit
- robot power unit
- robot unit
- robot-transfer unit
- roller bearing unit
- roller unit
- roller-marking unit
- rotary unit
- rotating seal unit
- S unit
- scanning unit
- scheduling unit
- screen projection unit
- screwing unit
- sealed reed contact unit
- self-contained NC unit
- self-contained unit
- sensing unit
- sensor unit
- servo unit
- shankless boring unit
- sheet metal stamping automatic unit
- shop replaceable unit
- shuttle unit
- shuttle-and-lift unit
- side unit
- single-acting unit
- single-light unit
- single-reduction gear unit
- single-reduction unit
- sizing unit
- slant bed unit
- slave unit
- slide unit
- sliding table unit
- smallest replaceable unit
- spare unit
- speeder unit
- speed-increase unit
- speed-up spindle unit
- speed-up unit
- spindle box unit
- spindle cartridge unit
- spindle drive unit
- spindle unit
- stabilizing unit
- stand-alone unit
- standard build units
- starter auxiliary power unit
- static tooling unit
- steam generating unit
- stock feed unit
- storage unit
- stylus unit
- sub-multiple unit
- swing arm-mounted control unit
- tangent unit
- tapping unit
- teach control unit
- terminal control unit
- test unit
- testing unit
- thermal detecting unit
- tilting unit
- tolerance unit
- tool storage unit
- tool-presetting unit
- tool-spindle unit
- toroidal variable-speed friction drive unit
- track and store unit
- transfer unit
- transmission control unit
- transmission unit
- transmitter/receiver unit
- transport unit
- triple-reduction gear unit
- triple-reduction unit
- tuning unit
- turnaround unit
- turning spindle unit
- turnround unit
- turret unit
- twin gear unit
- twin saw unit
- twin-drive unit
- twin-screen unit
- unit of displacement
- unit of measure
- unit of measurement
- unit of physical quantity
- unit of product
- unit of work per unit of time
- unmanned machining unit
- vacuum unit
- variable coefficient unit
- variable delay unit
- variable preload bearing unit
- variable ratio unit
- variable speed unit
- variable-speed friction drive unit
- V-axis grinding unit
- V-belt variable-speed drive unit
- V-drive unit
- vertical way unit
- vibratory feed unit
- vise unit
- visual display unit
- vocal output unit
- VTL unit
- waveform gear reduction unit
- wheel-dressing unit
- wheel-head unit
- wing unit
- wing-base unit
- work storage unit
- work-holding headstock unit
- workshop video unit
- work-testing unit
- worm reduction unit
- writing unit
- yet-to-be-assembled unitEnglish-Russian dictionary of mechanical engineering and automation > unit
-
8 system
1) система2) установка; устройство•- 2D design system
- 2-D draughting system
- 2D milling CAM system
- 3 nonsimultaneous axes control system
- 3D CAD system
- 3D design system
- 3D milling CAM system
- 3-D surface-modeling system
- 3-D system
- abrasive waterjet cutting system
- absolute control system
- absolute dimension measuring system
- accident-protection system
- accountancy system
- accounting data system
- ACO system
- acoustic feedback control system
- acquisition system
- active enclosure system
- adaptable system
- adaptive CNC system
- adaptive control constraint system
- adaptive control system
- adaptive pulsing system
- adaptive robot system
- add-on NC programming system
- administrative information data system
- administrative information system
- ADR system
- advanced command data system
- advanced data analysis system
- advanced data display system
- advanced display system
- advanced integrated data system
- advanced interactive debugging system
- advanced management information system
- advisory system
- AGV system
- air flotation system
- air-bearing system
- air-cooling system
- air-delivery system
- air-gaging system
- airlock system
- air-oil mist lubrication system
- air-plasma arc-profiling system
- air-purge system
- alarm system
- all-enveloping guard system
- analog computing system
- analog recording system
- angstrom-positioning system
- antideflection system
- antilock brake system
- antisag system
- application-specific system
- APT generating expert system
- Archimedes system
- array system
- AS/RS system
- assembly management system
- assembly system
- attitude display system
- autolube system
- automated communications and messages processing system
- automated design and optimization of control system
- automated design system
- automated digital design system
- automated industrial management system
- automated information data system
- automated information dissemination system
- automated information retrieval system
- automated inventory distribution system
- automated machining system
- automated management information system
- automated management system
- automated measuring system
- automated parts input-output system
- automated reliability and maintenance management system
- automated storage control system
- automatic alignment-and-centering system
- automatic call distribution system
- automatic CAM system
- automatic chuck-changing system
- automatic data acquisition system
- automatic data distribution system
- automatic data system
- automatic diagnostic-and-recovery system
- automatic display plotting system
- automatic distributive numerical control system
- automatic fixturing system
- automatic gaging-and-compensating system
- automatic measurement-and-compensation system
- automatic message accounting system
- automatic message distribution system
- automatic pallet storage/retrieval system
- automatic program transfer system
- automatic record evaluation system
- automatic telemetry system
- automatic test analysis system
- automatic test system
- automatic testing, evaluating and reporting system
- automatic tool cassette changer system
- automatic tool retraction system
- automatic tool retraction/correction/reentry system
- automatic tool wear/tool broken sensing system
- automatically taught system
- automation system
- autonomous system
- autopatch system
- AWS system
- axis drive system
- axis motor system
- axis-stopping system
- backlash-free friction system
- back-to-back system
- balance system
- balanced system of forces
- balanced system
- bar feed system
- bar pulling system
- bar pusher system
- barring coding system
- base coordinate system
- base data system
- base file system
- base operating information system
- basic disk operating system
- basic hole system
- basic input/output system
- basic NC system
- basic programming system
- basic shaft system
- batching system
- batch-machining system
- battery system
- BCC management information system
- beam delivery system
- belt turnover system
- belt twist system
- binary system
- binary vision system
- biped robotic system
- block-tool system
- block-type tool change system
- bonded stores system
- boring system
- bought-in control system
- brake system
- branch information system
- breakaway system
- breathing system
- broad system of ordering
- BTA deep-hole-drilling system
- BTA-style deep-hole-drilling system
- bug-free system
- building block system
- bulk system
- business information system
- buy-and-plug-in system
- C/C system
- cable and hose carrying system
- CAD access system
- CAD system
- CAD/CAM system
- CAD/CAM/CAE and product data management system
- CAD/CAM/CAE system
- CAD/CAPP/CAM system
- CADAR system
- CAD-integrating system
- CAD-only system
- CAE system
- CAE/CAD/CAM system
- CAG system
- CAM system
- cam-and-lever system
- capacitance-based measuring system
- CAPP system
- capture system
- carrierband system
- cart/pallet transfer system
- Cartesian coordinate system
- cassette jaw-change system
- cell control system
- cell management system
- cell-type system
- cellular manufacturing system
- central analog data distributing and controlling system
- central automatic message accounting system
- central storage system
- centralized control system
- centralized coolant and extractor system
- centralized swarf conveying system
- centralized swarf removal system
- chain conveyor system
- check system
- checking system
- checkout system
- chiller system
- chip conveyor system
- chip guard system
- chip-evacuation system
- chuck/chuck jaw changing system
- chucking system
- chuck-jaw system
- chuck-loading system
- CIM system
- circular monitoring system
- circular part-processing system
- circulating lubrication system
- circulating oil system
- circulation system
- clamping system
- closed cooling system
- closed loop control system
- closed loop machine control system
- closed loop size control system
- closed loop system
- closed-proprietary system
- CM system
- CNC hardware system
- CNC machine tool system
- CNC programming system
- CNC system
- CNC transfer system
- CNC-ACC system
- CNC-control system
- coherent system of units
- collecting system
- collet pad top jaw system
- combined cooling system
- combined production system
- command-line NC system
- commercial vision system
- communication system
- companion system
- comprehensive power measurement system
- computer analysis and design system
- computer automation real-time operating system
- computer data communication system
- computer NC system
- computer system
- computer vision system
- computer-aided design support system
- computer-aided dispatch system
- computer-aided gaging system
- computer-aided programming system
- computer-aided telemetry system
- computer-aided test system
- computer-assisted command system
- computer-assisted message processing system
- computer-assisted microfilm retrieval system
- computer-assisted operation sequence planning system
- computer-automated machine-tool system
- computer-automated test system
- computer-based management system
- computer-based message system
- computer-controlled materials-handling system
- computer-controlled system
- computer-coordinated measuring system
- computer-directed swing-arm tool-changing system
- computer-driven control system
- computer-hosted manufacturing system
- computer-integrated manufacturing system
- computer-integrated system
- computerized information retrieval system
- computerized machine control system
- computerized manufacturing system
- computerized numerical control system
- computerized production control system
- computerized shopfloor data collection system
- computer-oriented production management system
- computer-oriented system
- computing system
- concurrent force system
- conductor system
- conservative system
- constant delivery system
- constant volume system
- constant-contact scanning system
- constraint satisfaction system
- continuous feedback control system
- continuous flow system
- continuous-path CNC system
- continuous-path control system
- contouring control system
- contouring system
- controlled path system
- controlling system
- conventional ACC system
- conversational analysis and drafting system
- conveying system
- conveyor system
- conveyoring system
- conveyorized work-handling system
- coolant clarification system
- coolant laundering system
- coolant mist system
- coolant recirculating system
- coolant recovery system
- coolant recycling system
- coolant supply system
- coolant-circulating system
- coolant-thru-body system
- cooling system
- coordinate drive system
- coordinate system
- coprocessor board system
- copymill control system
- corporate information and office system
- coupling system
- CPS system
- CRT control system
- CRT system
- customer-oriented system
- customized FMS control system
- cut-piece transfer system
- cycloidal tooth system
- data base management system
- data communication system
- data control system
- data input management system
- data management system
- data origination system
- data processing system
- data retrieval system
- data transfer system
- datum system for geometrical tolerancing
- datum system
- DDM system
- decentralized DNC system
- decision enabling system
- decision support system
- dedicated production system
- deep-hole-drilling system
- defect-free machining system
- delivery system
- demand pull flexible system
- demand push flexible system
- departmental management system
- descaling system
- design coordinate system
- design support system
- design-automation system
- design-for-manufacturing system
- design-with-feature system
- desk-top publishing system
- deterministic system
- dexel-based system
- diagnostic communication control system
- diagnostic computer control system
- dialog system
- diamond-lapping system
- digital readout system
- digitizing system
- digitizing/data capture system
- dimensional verification system
- direct impingement starting system
- direct lubrication system
- direct NC system
- discrete-continuous system
- dispatcher system
- distributed computer system
- distributed mass-spring system
- distributed microprocessor system
- distributed processing system
- distributed quality system
- distributed system
- distributive numerical control system
- DNC flexible machining system
- DNC machine control system
- DNC machine tool control system
- DNC system
- DNC/FM system
- document processing system
- document retrieval system
- document search system
- domain-expert system
- Doppler system
- DOS CAM system
- double tube system
- dowel pin system
- DRO system
- drop-feed-lubrication system
- DTP system
- dual laser optical system
- dual laser referencing system
- dual system
- dual-beam LDDM system
- dual-pallet shuttle system
- dual-shaft electric propulsion system
- dynamic beam focusing laser system
- dynamic data system
- dynamic mapping system
- early warning system
- eddy current damper system
- edge-sensing system
- edge-type positioning system
- eight-station pallet system
- electrical contact tracing system
- electrofluidic control system
- emergency protection system
- enclosure system
- encoder checking system
- endpoint locating system
- energy-adaptive system
- energy-saving drive system
- engine starting system
- entry-level NC system
- environmental control system
- equivalent rigid link system
- equivalent systems of forces
- ESD system
- estimating system
- example-driven system
- expert control system
- expert process planning system
- expert system
- external box system
- extractor system
- fact retrieval system
- factory automation system
- fault detection system
- fault-signal system
- FBG system
- feasibility routing system
- feature-based CAM system
- feature-based system
- feed system
- feedback control system
- feedback gaging system
- feedback position control system
- feedback system
- feed-drive system
- feedforward compensatory control system
- feed-only AC system
- feed-overriding system
- FFS system
- file control system
- finite capacity scheduling system
- fixed coordinate system
- fixed-feature NC system
- fixed-rail system
- fixture design system
- fixture system
- fixturing system
- flanged pipe system
- flexible assembly system
- flexible automated manufacturing system
- flexible automation system
- flexible computer-controlled robotic system
- flexible fabricating system
- flexible fixturing system
- flexible handling system
- flexible laser optical system
- flexible laser system
- flexible lathe system
- flexible machine system
- flexible machining center system
- flexible machining system
- flexible manufacturing system
- flexible NC system
- flexible press system
- flexible tooling system
- flexible transfer system
- flexible turning system
- flood coolant system
- flow-line production system
- flow-type manufacturing system
- fluid management system
- fluid power system
- flush-type cooling system
- fly system
- FMS operating system
- FMS/CAD/CAM system
- FMS-type production system
- force measurement system
- force sensory system
- force system
- force-sensing system
- forecasting system
- four-station pallet system
- four-tier quality system
- FROG navigation system
- FROG system
- full-blown system
- fully specified system
- gage system
- gaging computer system
- gaging-and-compensating system
- gantry loading system
- gantry-based turning system
- gantry-style motion system
- gas-turbine starting system
- gating system
- gear roller system
- gear system
- gear testing system
- general information retrieval system
- generative planning system
- generic control system
- generic messaging system
- generic system
- glass fiber system
- glazing system
- goal-seeking system
- graphic numerical control system
- graphic processing system
- graphics system
- graphics-oriented system
- grating measuring system
- gravity oil system
- gray scale imaging system
- grinder vision system
- group control system
- guarding system
- guidance system
- guiding system
- handling system
- handwriting-input system
- hard-automated system
- hardware NC system
- hardware support system
- head change system
- head changer system
- head-changing flexible manufacturing system
- help system
- hierarchical coding system
- hierarchical control system
- hierarchical information control system
- high-noise-immunity system
- high-rise system
- high-speed positioning system
- high-speed-processor control system
- high-volume system
- Hirth gear-tooth system
- holding system
- holding tool system
- hole system
- holonomic system
- host computer-assisted programming system
- host distributive numerical control system
- hybrid computing system
- hydraulic oil system
- hydraulic system
- hydraulic-circuit system
- hypertext system
- ID system
- IDNC system
- illumination system
- image detection system
- image processing system
- imaging system
- IMC system
- immersion-washing system
- inconsistent system of equations
- incremental measuring system
- index system
- indirect lubrication system
- individual lubrication system
- inductive telemetry system
- inductively guided cart system
- industrial vision system
- in-feed system
- inference system
- in-floor chip-disposal system
- information infrastructure system
- information logical system
- information processing system
- information storage and retrieval system
- information system
- information-gathering system
- information-management system
- information-sharing system
- infrared imaging system
- infrared system
- in-house minicomputer system
- in-house system
- inlet control system
- in-process gaging system
- in-process sensing system
- in-process storage system
- insert-selection system
- instrumentation system
- insulating system
- integral movement monitoring system
- integrated CAD/CAPP/CAM system
- integrated CAM system
- integrated circuit numerical control system
- integrated computer system
- integrated information system
- integrated machine system
- integrated machining system
- integrated manufacturing and assembly system
- integrated manufacturing system
- integrated NC machine system
- integrated production system
- integrated sensor system
- intelligent control system
- interactive control system
- interactive graphics processing system
- interactive manufacturing control system
- interconnection system
- interdepartmental communication system
- interferometer measuring system
- interlocking system
- interrupt-driven system
- inventory-management system
- involute tooth system
- IR fault-signal system
- IR system
- ISO system of limits and tolerances
- isolated word recognition system
- jig boring measuring system
- job shop-type flexible system
- joint-actuation system
- just-in-time production system
- kanban pull system
- kinetic control system
- kitting system
- knowledge base management system
- knowledge system
- knowledge-based information system
- knowledge-based system
- krypton laser system
- labeling system
- labor-intensive system
- language-based NC system
- laser beam orientation system
- laser beam positioning system
- laser calibration system
- laser combination energy system
- laser digitizing system
- laser driving system
- laser full automated system
- laser inspection system
- laser interferometer measuring system
- laser machining system
- laser metalworking system
- laser micrometer system
- laser monitoring system
- laser mount system
- laser optical transformation system
- laser pulse power system
- laser pump system
- laser referencing system
- laser thread measurement system
- laser transducer system
- laser-cutting system
- laser-gaging system
- layered control system
- LDDM system
- lead screw drive system
- learning system
- library reference system
- library system
- light guide system
- light recognition system
- line motion control system
- line motion system
- line path system
- linear index system
- linear system of constant coefficients
- linear time invariant system
- linear time-varying system
- linear-encoder-equipped system
- LMFC system
- load/unload system
- loading robot system
- load-monitoring system
- local communications system
- logistics system
- look-up table system
- low-loss optical system
- low-volume lubricant delivery system
- lube system
- lubrication system with continuous delivery
- lubrication system with cyclic delivery
- lubrication system with performance control
- lubrication system without performance control
- lubrication system
- M system
- machine control system
- machine coordinate system
- machine health-monitoring system
- machine management system
- machine surveillance system
- machine tool capability-conditioning system
- machine tool system
- machine vision system
- machine/control system
- machine/tool/workpiece system
- machine-flexible system
- machine-zero reference system
- machining-cell system
- magnetic control system
- magnetic shaft suspension system
- main control system
- maintenance tracking system
- make-up system
- management control system
- management information system
- management system
- management-and-manufacturing system
- managerial reporting system
- man-computer system
- man-machine system
- man-plus-machine system
- manual data input system
- manual programming system
- manufacturing execution system
- manufacturing optimization system
- manufacturing software system
- manufacturing system
- many-degrees-of-freedom system
- many-variable system
- mass-elastic system
- master manufacturing control system
- master-slave control system
- material flow system
- material movement system
- material storage system
- materials-handling control system
- materials-handling system
- matrix array system
- matrix-type system
- MDI contouring control system
- MDI control system
- MDI NC system
- mean line system
- measurement/inspection system
- measuring coordinate system
- measuring system
- measuring/compensation system
- mechanical interface coordinate system
- memory NC system
- memory system
- menu drive system
- menu system
- menu-driven programming system
- metalforming production system with robots
- metalworking laser system
- metamorphic system
- metareasoning system
- metering system
- metrology system
- MIC system
- micro CAD/CAM programming system
- microadjustment system
- microchip-managed control system
- microdispensing system
- microintegrated system
- microload system
- micropackaged distributed system
- microprocessor based system
- microprocessor CNC system
- microprocessor system
- microprocessor-development system
- microstep control system
- microwave drill detection system
- milling CAM system
- milling system
- minicomputer-based numerical control system
- minicomputer-based system
- minicomputer-based test system
- miniload automated storage and retrieval system
- miniload system
- minimal constraint system
- minimum phase shift system
- mist-cooling system
- mixed forging-machining system
- mobility system
- model reference adaptive system
- moderately sized manufacturing system
- modular clamping system
- modular component tooling system
- modular fixture system
- modular holding system
- modular system
- modular tooling system
- modular work holding system
- monitoring system
- monorail material handling system
- motor position sensing system
- mounting system
- MPM system
- MRC system
- MRP system
- MS-DOS system
- multiaxis laser system
- multimachine system
- multimedia system
- multinetwork system
- multipallet system
- multiple computer system
- multiple laser technology system
- multiple pallet changer system
- multiple pallet handling system
- multiple parts feeding system
- multiple sensory system
- multiple spindle head handling-and-changing system
- multiple system of indexing
- multiple-gun spraying system
- multipoint lubrication system
- multipoint network control system
- multiprocessing system
- multiprocessor NC system
- multiprocessor system
- multiproduct manufacturing system
- multiprofile tool system
- multiprogramming system
- multirobot system
- multisensor system
- multiserver queueing system
- multistage system
- multitasking control system
- multiterminal system
- multiuser system
- multivendor information system
- multiwindowing software system
- Nagare system
- narrowly defined expert system
- national information system
- navigation system
- NC contouring system
- NC machine system
- NC part-programming system
- NC system
- NC tooling system
- NC/TP system
- nesting system
- network computer system
- network switching system
- network system
- noise diagnostic system
- noncircular copy-turning system
- noncompensated system
- noncontact laser marking system
- noncontact microwave system
- nonexpert system
- non-NC system
- numerical computer control system
- numerical contour control system
- numerical control system
- numerically controlled tool point system
- object-oriented system
- office system
- office-based programming system
- off-line adviser-type expert system
- off-line programming system
- off-line system
- off-the-shelf system
- oil mist system
- oil scavenge system
- oil system
- oil wash system
- oil-recirculating system
- oligarchical manufacturing system
- OLP system
- one man/one machine system
- one man-one operation-one job system
- one-machine flexible system
- one-piece tape spar-measuring system
- one-shot lubrication system
- on-line information system
- on-line process system
- on-line retrieval system
- on-line system
- on-line tool control system
- on-machine gaging system
- on-machine probing system
- on-off control system
- open architecture system
- open cooling system
- open system
- open-front system
- open-loop control system
- operating system
- operational system
- operator guidance system
- operator-controlled NC system
- optical detection system
- optical laser ranging system
- optical MAP system
- optical measurement/inspection system
- optical recognition system
- optical system for laser processing
- optical tracer backup system
- optical transmission system
- opti-feed system
- optimal-position control system
- order-driven system
- order-entry system
- order-picking system
- oscillating system
- oscillatory system
- out-feed system
- output collecting system
- overall system
- p.-t.-p. NC system
- package confinement system
- paging system
- pallet conveyor system
- pallet gripper system
- pallet ID system
- pallet storage system
- pallet storage/changer system
- pallet/platen transfer system
- pallet/robot flexible-machining system
- pallet-based materials handling system
- pallet-based system
- pallet-changer system
- pallet-coding system
- pallet-handling system
- palletized tool magazine system
- pallet-loading system
- pallet-moving system
- pallet-shuttle change system
- pallet-transfer system
- pallet-transport system
- paperless NC system
- parallel force system
- parallel lubrication system
- parametric CNC system
- part flow system
- part handling-and-storage system
- part program-editing system
- part queue system
- part-conveying system
- partial laser system
- part-programming system
- part-retrieval system
- passively mode-locked laser system
- path control system of a machine
- path control system
- pattern recognition system
- pattern tracing system
- pattern-directed system
- PC system
- PC-based CAD system
- PC-based vision system
- pendant-mounted CNC system
- perceptual system
- permanent electro system
- personal computer-based robotic vision system
- phase switching control system
- photogrammetric vision system
- photooptic tracing system
- photooptical tracing system
- piece rate system
- plane system of forces
- planner-oriented system
- plant-integration system
- platen system
- platform-independent CAM system
- playback system
- plugboard control system
- plugboard programming system
- point-to-point system
- popular laser system
- position control system
- positioning control system
- postprocess inspection system
- postprocess system
- postprocess-feedback gaging system
- potentiometer-setting system
- power generating system
- power system
- powered clamping system
- powered track system
- powerful robot system
- precision positioning system
- predictive machinability system
- predictive maintenance system
- pre-emptive system
- pregaging system
- preload system
- preset tooling system
- presetting system
- prismatic flexible manufacturing system
- prismatic machining system
- probe communication system
- problem-oriented information system
- process planning system
- process-flexible system
- production control system
- production expert system
- production-monitoring system
- productions system
- product-testing system
- programmable automation system
- programmable control system
- programmable logic control system
- programmable power monitoring system
- programmed sequence control system
- programming system
- proof-of-concept system
- proprietary NC system
- propulsion system
- propulsive system
- protection system
- prototype system
- prototyping system
- pull system of production
- pull system
- punch tape NC system
- purpose-made materials feeding system
- push system
- qualitative system
- quality control system
- quality system
- quantity produced systems
- question-and-answer system
- question-answering system
- queuing system
- quick-change system
- quick-change workpiece-fixturing system
- quick-change-cutter system
- rack system
- rack-picking system
- rail-borne robotic handling system
- rail-guided transport system
- random mission system
- random mix system
- random order system
- ranging system
- readout system
- ready-to-go system
- real-time vision system
- recirculation system
- rectangular coordinate system
- rectangular triordinate system
- reeving system
- reference retrieval system
- reference system
- reflecting high-power beam optical system
- register system
- registration system
- relay ladder logic system
- reporting system
- reprographic system
- resolver system
- restraint system
- RETIC system
- retrieval system
- retrofit system
- return spring system
- RGV pallet delivery system
- rigid track workpiece transport system
- rigid transfer system
- robot control system
- robot gantry storage-and-retrieval system
- robot learning system
- robot parts-handling system
- robot system
- robot teaching system
- robot tool changing system
- robot-based turning system
- robotic system
- robotic vision system
- robotics CAD system
- robotized metalforming system
- robot-like inspection system
- robot-measuring system
- rod memory system
- roller system
- roll-generating system
- rotary transfer system
- rotary-type tool-mounting system
- rotational system
- routing-flexible system
- rule-based expert system
- running fail-safe system
- running system
- run-time system
- safety actuation system
- safety system
- scale back system
- seam tracking laser processing system
- seam-tracking system
- security system
- selective assembly system
- selective control system
- self-adapting system
- self-contained starting system
- self-contained system
- self-monitoring measuring system
- self-optimizing adaptive control system
- self-programming NC system
- self-teaching system
- self-test system
- sensing system
- sensor system
- sensor-based system
- sensory control system
- sensory feedback system
- sensory interactive system
- sensory-processing system
- sentence recognition system
- sequencing control system
- sequential control system
- series lubrication system
- service system
- servo control system
- servo drive system
- servo positioning system
- servo transducer system
- servo-controlled blade-feed-pressure system
- setting system
- SFP system
- shaft system
- shared tools system
- shopfloor communication message system
- shopfloor part-programming system
- shopfloor programming system
- shopfloor-programming control system
- short-closed oil system
- shuttle car system
- shuttle system
- shuttle-type container system
- side-loading pallet system
- sign system
- signature-analysis system
- silhouetting system
- single system
- single-board computer system
- single-cell system
- single-line lubrication system
- single-point lubrication system
- single-stage system
- single-tube system
- single-unit machining system
- single-variable system
- sinking system
- six-station pallet system
- size-monitoring system
- skidless system
- skid-type system
- small knowledge system
- small scale system
- small-batch manufacturing system
- sociotechnical system
- software-based system
- software-operating system
- solid model CAD system
- solid modeling system
- solids-based system
- sonic digitizing system
- space-monitoring sensor system
- special-purpose CNC system
- special-purpose material handling system
- speech-understanding system
- spindle airblast system
- spindle-probe system
- splash lubrication system
- split-type of tooling system
- spray lubrication system
- sprocket-chain system
- stabilization system
- stabilizing system
- stacking system
- stand-alone system
- standard control system
- standard unit system
- starting system
- statistical process control system
- steady-state system
- stepping motor drive system
- stocker system
- stocking system
- stop-bolt locking system
- storage system
- storage-and-retrieval system
- storage-retrieval system
- straight cut control system
- straight-line control system
- stress calculations infinite element system
- structurally stable system
- structurally unstable system
- stub-tooth system
- subloop system
- supervision system
- supervisory computer control system
- supervisory control system
- surface-measurement system
- surveillance system
- suspension system
- swarf conveyance system
- swarf-management system
- swarf-removal system
- switching system
- synthetic vision system
- system of dimensioning
- system of forces
- system of limits and fits
- system of quantities
- system of the machine retaining devices
- system of units
- tactile sensing system
- tailored NC system
- tailor-made system
- tape-oriented system
- target system
- teach system
- teachable-logic control system
- teaching system
- teach-mode programming system
- technology-intensive system
- telecommunication system
- telemetry gage system
- telemetry system
- teleoperated system
- telepresence system
- telerobotic system
- ten-station pallet system
- term system
- test system
- testing system
- text organizing system
- thermal control system
- thermal enclosure system
- thermal propulsion system
- thread measurement system
- thread measuring system
- three-dimensional CAM system
- three-dimensional coordinate system
- three-wire thread measuring system
- through feed system
- through-the-tool system
- time control system
- time cycle system
- time-shared system
- time-sharing NC programming system
- time-sharing system
- tool animation system
- tool breakage prevention system
- tool change system
- tool condition monitoring system
- tool coolant system
- tool deflection calibration system
- tool identification tag system
- tool life control system
- tool life management system
- tool magazine exchanger system
- tool management system
- tool position-compensating system
- tool shank cleaning system
- tool storage and transport system
- tool storage/management system
- tool-associated system
- tool-clamp system
- tool-holder-work system
- tool-ID system
- tooling AGV system
- tooling system
- tool-in-hand system
- tool-in-use system
- tool-machine system
- tool-monitoring system
- tool-mounting system
- tool-presetting system
- tool-probing system
- tool-to-turret connection system
- tool-transfer system
- torque-monitoring system
- total system
- total-loss lubrication system
- touch-probe digitizer system
- touch-probe digitizing system
- touch-probe system
- towline cart system
- towline conveyor system
- towline handling system
- towline material handling system
- towline transfer system
- tracer control system
- tracing system
- track system
- tracking/scheduling system
- track-monitoring system
- transfer system
- translating system
- transmission system
- transporter system
- traverse-metering system
- tray-type transfer system
- triangulation system
- tribomechanical system
- tri-level stocker system
- triordinate system
- trolley control system
- trouble-free control system
- T-slot system
- tuned system
- turning system
- turning-and-chucking system
- turnkey computer control system
- turnkey system
- turret probing system
- turret tooling system
- two-line lubrication system
- two-machine system
- two-pallet exchange system
- two-shift system
- two-tier inspection system
- unattended machining system
- unattended production system
- uncertain system
- unified system
- unit bore system
- unit system
- unit-build system
- unit-load automated storage and retrieval system
- unit-load system
- UNIX-based 32-bit computer system
- unmonitored control system
- unstable system
- user identification system
- user's CAD system
- V coding system
- vacuum system
- variable pallet system
- variable-coefficient system
- variable-gain ACC system
- variable-mission system
- versatile data acquisition system
- vertical carousel system
- vertical rotating warehouse system
- vibration system
- vibratory system
- video measuring system
- video-based measurement system
- viewing system
- virtual design system
- virtual storage system
- vision guidance system
- vision metrology system
- vision optical system
- vision sensor system
- vision system
- vision tool-presetting system
- vision-based inspection system
- vision-based system
- visual computing system
- visual inspection system
- VME-based system
- voice data entry system
- voice system
- voice-input system
- volume-flexible system
- volume-metric lubrication system
- voluntary standards system
- warehousing system
- warning protection system
- warning system
- wash system
- waste material treatment system
- watchdog system
- waterjet system
- way-lubrication system
- wedge-locked tool clamping system
- wheelhead-measuring system
- windowing system
- wire-cut system
- wire-frame CAD system
- wire-guided transport system
- wire-guided trolley routing system
- word recognition system
- work infeed system
- work transfer system
- work transport system
- workhandling system
- work-holding system
- workpiece-cleaning system
- workstation-oriented CNC system
- zero error position systemEnglish-Russian dictionary of mechanical engineering and automation > system
-
9 give
1. transitive verb,1) (hand over, pass) geben; (transfer from one's authority, custody, or responsibility) überbringen; übergeben (to an + Akk.)she gave him her bag to carry — sie gab ihm ihre Tasche zum Tragen
Give it to me! I'll do it — Gib her! Ich mache das
give somebody something, give something to somebody — jemandem etwas schenken
the book was given [to] me by my son — das Buch hat mir mein Sohn geschenkt
I wouldn't have it if it was given [to] me — ich würde es nicht mal geschenkt nehmen; abs.
give [a donation] to charity — für wohltätige Zwecke spenden
give and take — (fig.) Kompromisse eingehen; (in marriage etc.) geben und nehmen
give somebody something [in exchange] for something — jemandem etwas für etwas [im Tausch] geben
I would give anything or my right arm/a lot to be there — ich würde alles/viel darum geben, wenn ich dort sein könnte
4) (assign) aufgeben [Hausaufgaben, Strafarbeit usw.]; (sentence to) geben [10 Jahre Gefängnis usw.]5) (grant, award) geben [Erlaubnis, Arbeitsplatz, Interview, Rabatt, Fähigkeit, Kraft]; verleihen [Preis, Titel, Orden usw.]he was given the privilege/honour of doing it — ihm wurde das Vorrecht/die Ehre zuteil, es zu tun
give somebody to understand or believe that... — jemanden glauben lassen, dass...
6) (entrust somebody with) übertragen (to Dat.)give somebody the power to do something — jemanden ermächtigen, etwas zu tun
7) (allow somebody to have) geben [Recht, Zeit, Arbeit]; überlassen [seinen Sitzplatz]; lassen [Wahl, Zeit]they gave me [the use of] their car for the weekend — sie überließen mir ihr Auto übers Wochenende
I will give you a day to think it over — ich lasse dir einen Tag Bedenkzeit
give yourself time to think about it — lass dir Zeit, und denk darüber nach
give me London any day or time or every time — (fig. coll.) London ist mir zehnmal lieber
I['ll] give you/him etc. that — (fig. coll.): (grant) das gebe ich zu; zugegeben
you've got to give it to him — (fig. coll.) das muss man ihm lassen
it cost £5, give or take a few pence — es hat so um die fünf Pfund gekostet (ugs.)
given that — (because) da; (if) wenn
given the right tools — mit dem richtigen Werkzeug
given time, I'll do it — wenn ich Zeit habe, mache ich es
8) (offer to somebody) geben, reichen [Arm, Hand usw.]9) (cause somebody/something to have) geben; verleihen [Charme, Reiz, Gewicht, Nachdruck]; bereiten, machen [Freude, Mühe, Kummer]; bereiten, verursachen [Schmerz]; bieten [Abwechslung, Schutz]; leisten [Hilfe]; gewähren [Unterstützung]I was given the guest room — man gab mir das Gästezimmer
give a clear picture — (Telev.) ein gutes Bild haben
give somebody what for — (sl.) es jemandem geben (ugs.)
10) (convey in words, tell, communicate) angeben [Namen, Anschrift, Alter, Grund, Zahl]; nennen [Grund, Einzelheiten, Losungswort]; geben [Rat, Beispiel, Befehl, Anweisung, Antwort]; fällen [Urteil, Entscheidung]; sagen [Meinung]; bekannt geben [Nachricht, Ergebnis]; machen [Andeutung]; erteilen [Verweis, Rüge]; (present, set forth) [Wörterbuch, Brief:] enthalten; [Zeitung:] bringen [Bericht]give details of something — Einzelheiten einer Sache (Gen.) darlegen
give somebody the facts — jemanden mit den Fakten vertraut od. bekannt machen
don't give me that! — (coll.) erzähl mir [doch] nichts! (ugs.)
12) (perform, read, sing, etc.) geben [Vorstellung, Konzert]; halten [Vortrag, Seminar]; vorlesen [Gedicht, Erzählung]; singen [Lied]; spielen [Schauspiel, Oper, Musikstück]give us a song — sing mal was
13) ausbringen [Toast, Trinkspruch]; (as toast)ladies and gentlemen, I give you the Queen — meine Damen, meine Herren, auf die Königin od. das Wohl der Königin
14) (produce) geben [Licht, Milch]; tragen [Früchte]; ergeben [Zahlen, Resultat]; erbringen [Ernte]16) (make somebody undergo) geben; versetzen [Schlag, Stoß]; verabreichen (geh.), geben [Arznei]give somebody a [friendly] look — jemandem einen [freundlichen] Blick zuwerfen
he gave her hand a squeeze — er drückte ihr die Hand
give as good as one gets — (coll.) es jemandem mit gleicher Münze heimzahlen
17) (execute, make, show) geben [Zeichen, Stoß, Tritt]; machen [Satz, Ruck]; ausstoßen [Schrei, Seufzer, Pfiff]give a [little] smile — [schwach] lächeln
give something/somebody a look — sich (Dat.) etwas/jemanden ansehen
be given to something/doing something — zu etwas neigen/etwas gern tun
give all one's got — (coll.) sein möglichstes tun
19) (be host at) geben [Party, Empfang, Essen usw.]20)2. intransitive verb,give somebody/something two months/a year — jemandem/einer Sache zwei Monate/ein Jahr geben
gave, given1) (yield, bend) nachgeben (auch fig.); [Knie:] weich werden; [Bett:] federn; (break down) zusammenbrechen; [Brücke:] einstürzen; (fig.) nachlassen2) (lead)3. noungive on to the street/garden — [Tür usw.:] auf die Straße hinausführen/in den Garten führen
1) Nachgiebigkeit, die; (elasticity) Elastizität, diehave [no] give — [nicht] nachgeben
2)give and take — (compromise) Kompromiss, der; (exchange of concessions) Geben und Nehmen, das
Phrasal Verbs:- academic.ru/31217/give_away">give away- give back- give in- give off- give out- give over- give up- give way* * *(to dismiss (someone) or to be dismissed (usually from a job): He got the boot for always being late.) rausgeschmissen werden* * *[gɪv]<gave, given>1. (in collocations) see birth 1, blood I. 1, call I. 1, chase I. 1, evidence I. 2, kiss2 I. 1, look I. 1, smile I.2. (hand over)to \give sb a cold jdn mit seiner Erkältung ansteckento \give a woman in marriage to sb eine Frau an jdn verheiratenshe gave him two sons sie schenkte ihm zwei Söhne3. (administer)to \give sb a sedative jdm ein Beruhigungsmittel geben4. (as present)this book was given to me by my best friend dieses Buch hat mir meine beste Freundin geschenktplease \give generously wir bitten um großzügige Spendento \give sb a present jdm etwas schenkento \give sb sth as a present jdm etw schenken5. (offer)▪ to \give sb sth jdm etw gebento \give sb food jdm zu essen gebento \give sb one's seat jdm seinen Platz anbietento \give sb something to eat/drink jdm etwas zu essen/trinken anbietenthey gave us pork for dinner zum Abendessen servierten sie Schweinefleisch6. (entrust)to \give one's baby/sth into sb's care jdm sein Baby/etw anvertrauento \give sb the power to do sth jdn dazu bevollmächtigen, etw zu tun7. (sacrifice)I'd \give anything [or the world] [or my right arm] to be... ich würde alles dafür geben [o tun],... zu sein8. (sell, pay)to \give sb sth for £20 jdm etw für 20 Pfund verkaufento \give sb £20 for sth jdm für etw akk 20 Pfund zahlenhow much did you \give for that? wie viel hast du dafür gezahlt?I'll \give you the camera for £100 für 100 Pfund gehört die Kamera dir!9. (cause)▪ to \give sb sth etw bei jdm hervorrufensth \gives sb a headache jd bekommt von etw dat Kopfschmerzen; ( fig) etw bereitet jdm Kopfschmerzento \give sb/sth a bad name jdn/etw in Verruf bringento \give sb to understand that... jdm zu verstehen geben, dass...the fresh air has \given us an appetite die frische Luft hat uns Appetit gemachtthat will \give you something to think about! darüber kannst du ja mal nachdenken!what gave you that idea? wie kommst du denn auf die Idee?; see also joy 1, pleasure 1, pain I. 1, 2, trouble I. 410. (grant)▪ to \give sb sth jdm etw gebento \give sb his/her due jdm Ehre erweisen\give the devil his due Ehre, wem Ehre gebührtto \give sb encouragement jdn ermutigento \give sb permission [to do sth] jdm die Erlaubnis erteilen[, etw zu tun]11. (impart)to \give one's age/name sein Alter/seinen Namen angebento \give a decision court ein Urteil fällento \give sb the news of sth jdm etw mitteilencan you \give me any details? können Sie mir irgendwelche Einzelheiten nennen?she wouldn't \give me her opinion sie wollte mir nicht sagen, was sie denkthe couldn't \give me a reason why... er konnte mir auch nicht sagen, warum...\give him my thanks richten Sie ihm meinen Dank aus\give her my regards [or my best wishes] grüß' sie schön von mir!; see also advice 1, answer I. 1, information I. 1, notice II. 4, warning 212. (assign)to be given full sentence/life imprisonment die Höchststrafe/lebenslang bekommenthe teacher gave us no exercises today der Lehrer hat uns heute nichts aufgegeben\give me the police/sales department/Mr Smith verbinden Sie mich bitte mit der Polizei/der Verkaufsabteilung/Mr. Smith14. (allow)just \give me two more days geben Sie mir noch zwei Tage extraI'll \give you a day to think it over ich lasse dir einen Tag Bedenkzeit\give yourself time to get over it lass' dir Zeit, um darüber hinwegzukommen\give or take mehr oder wenigerhe came at six o'clock, \give or take a few minutes er kam so gegen sechs15. (predict)to \give sb/sth three months/five years marriage, relationship jdm/etw drei Monate/fünf Jahre geben16. (present)to \give a concert ein Konzert gebento \give a speech/lecture eine Rede/einen Vortrag halten\give us a song, John sing uns was vor John!17. (host)to \give a party/reception eine Party/einen Empfang gebento \give a bark bellento \give a cry/groan aufschreien/-stöhnen19. (like best)20. (value)21. (devote)I'll \give you what for, young lady, coming home at 2 o'clock in the morning! ich geb' dir gleich was, junge Dame — um zwei Uhr morgens nach Hause zu kommen!23. (produce)▪ to \give sth result, number etw ergebento \give milk/light Milch/Licht gebento \give warmth Wärme spenden24. (do)to \give sb's hand a squeeze jdm die Hand drückento \give sb a [dirty/friendly] look jdm einen vernichtenden/freundlichen Blick zuwerfento \give a shrug mit den Schultern [o Achseln] zucken25. (admit/grant)she's quite brave, I'll \give you that das gestehe ich dir zu — Mut hat sieI'll \give you that das muss man dir lassen27. (toast)to \give a toast to sb auf jdn einen Tost ausbringenI \give you the president auf den Präsidenten!; (as speaker) das Wort hat der Präsident28.▶ \give me a break! jetzt mach aber mal halblang! fam; (stop) jetzt hör' aber auf! fam; (don't believe) das glaubst du doch selbst nicht! fam<gave, -n>1. (donate)to \give of one's best sein Bestes gebento \give of one's money/time sein Geld/seine Zeit opfernto \give generously großzügig spendento \give and take [gegenseitige] Kompromisse machenyou can't work so hard all the time, something's bound to \give du kannst nicht die ganze Zeit so hart arbeiten, sonst wird das irgendwann mal ganz böse ausgehen! sl4. (be at an end)what \gives? was gibt's Neues?what \gives here? was ist hier so los? fam6. (tell)\give! erzähl' schon! fam7.▶ it is better [or more blessed] to \give than to receive ( prov) Geben ist seliger denn Nehmen prov▶ to \give as good as one gets Gleiches mit Gleichem vergeltenIII. NOUNto [not] have much \give [nicht] sehr nachgeben; (elastic) [nicht] sehr elastisch sein* * *[gɪv] vb: pret gave, ptp given1. TRANSITIVE VERBWhen give is part of a set combination, eg. give evidence, give chase, look up the other word.1) gebenwe were given three exercises she was given a sedative — wir haben drei Übungen bekommen or (as homework) aufbekommen man hat ihr or ihr wurde ein Beruhigungsmittel gegeben
I'd give a lot/the world/anything to know... —
what wouldn't I give to be like you — was würde ich nicht darum geben, so wie du zu sein
he gave everything he had (fig) — er holte das Letzte aus sich heraus
11 o'clock, give or take a few minutes — so gegen 11 Uhr
six foot, give or take a few inches — ungefähr sechs Fuß
2) as present schenken; (= donate) spenden, gebenit was given to me by my uncle, I was given it by my uncle — ich habe es von meinem Onkel bekommen or geschenkt bekommen
he gave me a book as a present — er schenkte mir ein Buch, er machte mir ein Buch zum Geschenk
he gave the impression he didn't care — er machte den Eindruck, als ob es ihm egal wäre
to give sb support —
(God) give me strength to do it — Gott gebe mir die Kraft, es zu tun!
give me strength/patience! — großer Gott! (inf)
to give sb a look/smile — jdn ansehen/anlächeln
to give sb a blow — jdn schlagen, jdm einen Schlag versetzen
to give sb a push/kick — jdm einen Stoß/Tritt geben, jdn stoßen/treten
to give one's hair a brush/wash — sich (dat) die Haare bürsten/waschen
this incident gave him the basic plot of the story — durch dieses Ereignis bekam er die Grundidee für die Handlung der Geschichte
who gave you that idea? — wer hat dich denn auf die Idee gebracht?
that will give you something to think about — da hast du etwas, worüber du nachdenken kannst
I'll give you something to cry about — ich werde schon zusehen, dass du weißt, warum du weinst
give me Shakespeare/Spain (every time)! (inf) —
give me Renoir and Rembrandt, not these surrealist artists — mir sind Renoir und Rembrandt viel lieber als diese Surrealisten
radio has almost given way to television — das Radio ist vom Fernsehen fast verdrängt worden on road
I was expecting him to give way — ich nahm an, er würde mir die Vorfahrt lassen
"give way" — "Vorfahrt (gewähren)"
to give sb pain — jdm wehtun (also fig), jdm Schmerzen bereiten
it gives me great pleasure to... — es ist mir eine große Freude...
to give sb a shock — jdm einen Schock versetzen __diams; to give sb to understand that...
I was given to understand/believe that... — mir wurde zu verstehen gegeben, dass...
5) = punish with erteilenhe gave the child a smack — er gab dem Kind einen Klaps
to give sb five years — jdn zu fünf Jahren verurteilen, jdm fünf Jahre aufbrummen
he was given a thrashing/five years — er hat eine Tracht Prügel/fünf Jahre bekommen
6)= utter
to give a cry/groan/laugh/sigh — aufschreien/-stöhnen/-lachen/-seufzen8) = allow time gebenthey gave me a week to do it — sie gaben or ließen mir eine Woche Zeit, um es zu machen
give yourself time to recover — lassen Sie sich Zeit, um sich zu erholen
it's an improvement, I'll give you that — es ist eine Verbesserung, das gestehe ich (dir) ein
he's a good worker, I'll give him that — eines muss man ihm lassen, er arbeitet gut
9) = report, tell information, details, description, answer, advice geben; one's name, particulars angeben; suggestion machen; (= let sb know by letter, phone etc) decision, opinion, results mitteilenhe wouldn't give me his decision/opinion — er wollte mir seine Entscheidung/Meinung nicht sagen
they interrupted the film to give the football results — sie unterbrachen den Film, um die Fußballergebnisse zu bringen
give him my regards — bestellen Sie ihm (schöne) Grüße, richten Sie ihm (schöne) Grüße von mir aus
to give no/the right answer — nicht/richtig antworten
his letter gave us the latest news —
he forgot to give us the date — er hat vergessen, uns das Datum anzugeben or (verbally also) zu sagen or (by letter, phone etc also) mitzuteilen
10) = hold, perform party, dinner, play geben; speech halten; song singen; toast ausbringen (to sb auf jdn)give us a song —
I give you Mary (as toast) (as speaker) — auf Mary!, auf Marys Wohl! ich gebe Mary das Wort
11)= do
the child gave a little jump of excitement — das Kind machte vor Aufregung einen kleinen Luftsprung12) = devote widmen (to +dat)he has given himself entirely to medicine —
he gave himself/his life to God — er weihte sich/sein Leben Gott
2. INTRANSITIVE VERB1) = give way lit, fig = collapse, yield nachgeben; (strength, health, nerve, voice) versagen; (= break, rope, cable) reißen; (cold weather) nachlassenwhen you're under as much strain as that, something is bound to give (inf) — wenn man unter so viel Druck steht, muss es ja irgendwo aushaken (inf)
3) = give money etc geben, spendenyou have to be prepared to give and take (fig) — man muss zu Kompromissen bereit sein, man muss auch mal zurückstecken können
4)5)= tell US inf
OK, now give! — also, raus mit der Sprache! (inf)3. NOUNNachgiebigkeit f, Elastizität f; (of floor, bed, chair) Federung f4. PHRASAL VERBS* * *give [ɡıv]A sthere is too much give in the rope das Seil ist zu locker (gespannt)2. figa) Elastizität f, Flexibilität fb) Nachgiebigkeit f:there is no give in him er gibt nie nachB v/t prät gave [ɡeıv], pperf given [ˈɡıvn]1. a) geben:give sb the name of William jemandem den Namen William geben;give or take plus/minus;he has given me his cold er hat mich mit seiner Erkältung angestecktb) schenken:c) Blut etc spenden2. geben, reichen:give sb one’s hand jemandem die Hand geben3. einen Brief etc (über)geben4. (als Gegenwert) geben, (be)zahlen:how much did you give for that coat?;5. eine Auskunft, einen Rat etc geben, erteilen:6. sein Wort geben7. widmen:give one’s attention (energies) to sth einer Sache seine Aufmerksamkeit (Kraft) widmenfor für)9. ein Recht, einen Titel, ein Amt etc verleihen, geben, übertragen:give sb a part in a play jemandem eine Rolle in einem Stück geben10. geben, gewähren, zugestehen:give sb a favo(u)r jemandem eine Gunst gewähren;just give me 24 hours geben Sie mir (nur) 24 Stunden (Zeit);give sb until …b) jemandem bis … Bedenkzeit geben;I give you that point in diesem Punkt gebe ich Ihnen recht;give me the good old times! da lobe ich mir die gute alte Zeit!;give me Mozart any time Mozart geht mir über alles;it was not given to him to do it es war ihm nicht gegeben oder vergönnt, es zu tun11. einen Befehl, Auftrag etc geben, erteilen13. einen Preis zuerkennen, zusprechen14. eine Arznei (ein)geben, verabreichen15. jemandem ein Zimmer etc geben, zuteilen, zuweisen16. Grüße etc übermitteln:give him my love bestelle ihm herzliche Grüße von mir17. übergeben, einliefern:give sb into custody jemanden der Polizei übergeben, jemanden verhaften lassen18. jemandem einen Schlag etc geben, versetzen19. jemandem einen Blick zuwerfenb) eine Erklärung etc abgebenc) eine Rede etc halten21. (an)geben, mitteilen, seine Telefonnummer etc angeben:give a reason einen Grund angeben;don’t give me that! das glaubst du doch selbst nicht!;22. ein Lied etc zum Besten geben, vortragen23. ein Konzert etc geben, veranstalten:give a dinner ein Essen geben;give a play ein (Theater)Stück geben oder aufführen24. bereiten, verursachen:give pain Schmerzen bereiten, wehtun;25. (er)geben:give no result ohne Ergebnis bleiben26. geben, hervorbringen:cows give milk Kühe geben Milch;the lamp gives a good light die Lampe gibt gutes Licht27. einen Trinkspruch ausbringen auf (akk):I give you the ladies ich trinke auf das Wohl der Damen28. geben, zuschreiben:I give him 50 years ich schätze ihn auf 50 Jahre29. jemandem zu tun, zu trinken etc geben:I was given to understand that … man gab mir zu verstehen, dass …30. (in Redewendungen meist) geben:give it to him! umg gibs ihm!;give sb what for umg es jemandem geben oder besorgen; (siehe die Verbindungen mit den entsprechenden Substantiven)C v/i1. geben, spenden (to dat):give and take geben und nehmen, einander entgegenkommen, kompromissbereit sein2. nachgeben (auch Preise):the foundations are giving das Fundament senkt sich;the chair gives comfortably der Stuhl federt angenehm;his knees gave under him seine Knie versagten3. what gives? sl was gibts?;what gives with him? sl was ist los mit ihm?4. nachlassen, schwächer werden5. versagen (Nerven etc)6. a) nachgeben, (Boden etc) federnb) sich dehnen (Kleidungsstück)7. sich anpassen (to dat oder an akk)b) gehen (on[to] nach) (Fenster etc)9. US umga) sprechen:come on, give! los, raus mit der Sprache!b) aus sich herausgehen* * *1. transitive verb,1) (hand over, pass) geben; (transfer from one's authority, custody, or responsibility) überbringen; übergeben (to an + Akk.)give me... — (on telephone) geben Sie mir...; verbinden Sie mich mit...
give somebody something, give something to somebody — jemandem etwas schenken
the book was given [to] me by my son — das Buch hat mir mein Sohn geschenkt
I wouldn't have it if it was given [to] me — ich würde es nicht mal geschenkt nehmen; abs.
give [a donation] to charity — für wohltätige Zwecke spenden
give and take — (fig.) Kompromisse eingehen; (in marriage etc.) geben und nehmen
give somebody something [in exchange] for something — jemandem etwas für etwas [im Tausch] geben
I would give anything or my right arm/a lot to be there — ich würde alles/viel darum geben, wenn ich dort sein könnte
4) (assign) aufgeben [Hausaufgaben, Strafarbeit usw.]; (sentence to) geben [10 Jahre Gefängnis usw.]5) (grant, award) geben [Erlaubnis, Arbeitsplatz, Interview, Rabatt, Fähigkeit, Kraft]; verleihen [Preis, Titel, Orden usw.]he was given the privilege/honour of doing it — ihm wurde das Vorrecht/die Ehre zuteil, es zu tun
give somebody to understand or believe that... — jemanden glauben lassen, dass...
6) (entrust somebody with) übertragen (to Dat.)give somebody the power to do something — jemanden ermächtigen, etwas zu tun
7) (allow somebody to have) geben [Recht, Zeit, Arbeit]; überlassen [seinen Sitzplatz]; lassen [Wahl, Zeit]they gave me [the use of] their car for the weekend — sie überließen mir ihr Auto übers Wochenende
give yourself time to think about it — lass dir Zeit, und denk darüber nach
give me London any day or time or every time — (fig. coll.) London ist mir zehnmal lieber
I['ll] give you/him etc. that — (fig. coll.): (grant) das gebe ich zu; zugegeben
you've got to give it to him — (fig. coll.) das muss man ihm lassen
it cost £5, give or take a few pence — es hat so um die fünf Pfund gekostet (ugs.)
given that — (because) da; (if) wenn
given time, I'll do it — wenn ich Zeit habe, mache ich es
8) (offer to somebody) geben, reichen [Arm, Hand usw.]9) (cause somebody/something to have) geben; verleihen [Charme, Reiz, Gewicht, Nachdruck]; bereiten, machen [Freude, Mühe, Kummer]; bereiten, verursachen [Schmerz]; bieten [Abwechslung, Schutz]; leisten [Hilfe]; gewähren [Unterstützung]give a clear picture — (Telev.) ein gutes Bild haben
give somebody what for — (sl.) es jemandem geben (ugs.)
10) (convey in words, tell, communicate) angeben [Namen, Anschrift, Alter, Grund, Zahl]; nennen [Grund, Einzelheiten, Losungswort]; geben [Rat, Beispiel, Befehl, Anweisung, Antwort]; fällen [Urteil, Entscheidung]; sagen [Meinung]; bekannt geben [Nachricht, Ergebnis]; machen [Andeutung]; erteilen [Verweis, Rüge]; (present, set forth) [Wörterbuch, Brief:] enthalten; [Zeitung:] bringen [Bericht]give details of something — Einzelheiten einer Sache (Gen.) darlegen
give somebody the facts — jemanden mit den Fakten vertraut od. bekannt machen
don't give me that! — (coll.) erzähl mir [doch] nichts! (ugs.)
11) given (specified) gegeben12) (perform, read, sing, etc.) geben [Vorstellung, Konzert]; halten [Vortrag, Seminar]; vorlesen [Gedicht, Erzählung]; singen [Lied]; spielen [Schauspiel, Oper, Musikstück]13) ausbringen [Toast, Trinkspruch]; (as toast)ladies and gentlemen, I give you the Queen — meine Damen, meine Herren, auf die Königin od. das Wohl der Königin
14) (produce) geben [Licht, Milch]; tragen [Früchte]; ergeben [Zahlen, Resultat]; erbringen [Ernte]15) (cause to develop) machen16) (make somebody undergo) geben; versetzen [Schlag, Stoß]; verabreichen (geh.), geben [Arznei]give somebody a [friendly] look — jemandem einen [freundlichen] Blick zuwerfen
give as good as one gets — (coll.) es jemandem mit gleicher Münze heimzahlen
17) (execute, make, show) geben [Zeichen, Stoß, Tritt]; machen [Satz, Ruck]; ausstoßen [Schrei, Seufzer, Pfiff]give a [little] smile — [schwach] lächeln
give something/somebody a look — sich (Dat.) etwas/jemanden ansehen
18) (devote, dedicate) widmenbe given to something/doing something — zu etwas neigen/etwas gern tun
give all one's got — (coll.) sein möglichstes tun
19) (be host at) geben [Party, Empfang, Essen usw.]20)2. intransitive verb,give somebody/something two months/a year — jemandem/einer Sache zwei Monate/ein Jahr geben
gave, given1) (yield, bend) nachgeben (auch fig.); [Knie:] weich werden; [Bett:] federn; (break down) zusammenbrechen; [Brücke:] einstürzen; (fig.) nachlassen2) (lead)3. noungive on to the street/garden — [Tür usw.:] auf die Straße hinausführen/in den Garten führen
1) Nachgiebigkeit, die; (elasticity) Elastizität, diehave [no] give — [nicht] nachgeben
2)give and take — (compromise) Kompromiss, der; (exchange of concessions) Geben und Nehmen, das
Phrasal Verbs:- give in- give off- give out- give up- give way* * *(a lecture, etc.) v.abhalten (Lehrstunde, Vorlesung) v. v.(§ p.,p.p.: gave, given)= bereiten v.eingeben v.geben v.(§ p.,pp.: gab, gegeben)hingeben v.verursachen v.widmen v. -
10 process
1) процесс2) (технологический) процесс; (технологическая) обработка3) технологический приём; способ4) технология5) режим; ход (процесса)6) обрабатывать, подвергать обработке7) подвергать анализу, анализировать•to design process — разрабатывать технологию-
acetone-acetylene process
-
acetylene process
-
Acheson process
-
acid Bessemer process
-
acid process
-
acid reclaiming process
-
acyclic process
-
Adapti investment casting process
-
additive process
-
adiabatic process
-
Aero case process
-
aerobic process
-
age-dependent process
-
air blast process
-
air-sand process
-
Alcan process
-
Al-Dip process
-
alfin process
-
alkali reclaiming process
-
alkaline process
-
Allis-Chalmers agglomeration reduction process
-
ALT process
-
aluminothermic process
-
anaerobic process
-
anamorphotic process
-
annealing-in-line process
-
anode process
-
anodic electrode process
-
AOD process
-
aqua-cast process
-
ARBED-ladle-treatment process
-
arc-air process
-
arc-remelting process
-
argon-oxygen-decarburization process
-
ASEA-SKF process
-
autoregressive process
-
averaging process
-
Azincourt process
-
azo coupling process
-
background process
-
bag process
-
BAP process
-
Barrow process
-
Basett process
-
basic Bessemer process
-
basic oxygen process
-
basic process
-
basic-arc process
-
batch process
-
biofiltration process
-
bipolar process
-
bipolar-FET process
-
bipolar-MOS process
-
BISRA degassing process
-
black-heart process
-
Blackodising process
-
blast-furnace process
-
Blaw-Knox process
-
bleaching process
-
Bochumer-Verein process
-
boiling process
-
bonding process
-
bottom-argon-process process
-
broadband random process
-
bromoil transfer process
-
bromoil process
-
bubble-column process
-
bubble-hearth process
-
buffer-slag process
-
Calmes process
-
Canadizing process
-
carbon mold process
-
carbon process
-
carbon-arc process
-
carbon-in-leach process
-
carbon-in-pulp process
-
carbothermic process
-
carbro process
-
carrier-gas degassing process
-
cascade process
-
cast shell process
-
catalytic DENO process
-
cathodic process
-
CC-CR process
-
CC-DR process
-
CC-HCR process
-
cementation process
-
cementation-in-pulp process
-
cementing process
-
centrifugal spinning process
-
cermet process
-
CESM process
-
CEVAM process
-
charge transfer process
-
chemical vapor deposition process
-
chemical-bonding process
-
Chenot process
-
china process
-
cine exposure process
-
cine process
-
CLC process
-
clean burn process
-
cloudburst process
-
CLU process
-
CMOS process
-
CNC process
-
CO2 silicate process
-
coal reduction process
-
coal to gas process
-
coal-gas-sumitomo process
-
coal-oxygen-injection process
-
COIN process
-
cold box process
-
cold doping process
-
cold process
-
cold scrap process
-
cold type process
-
collodion process
-
color process
-
concurrent processes
-
consteel process
-
consumable electrode vacuum arc melting process
-
contact process
-
continuous annealing process
-
continuous casting-cleaning rolling process
-
continuous casting-direct rolling process
-
continuous casting-hot charging and rolling process
-
continuous electroslag melting process
-
continuous metal cast process
-
continuous-on-line control process
-
continuous-time process
-
controlled pressure pouring process
-
controlled process
-
converter process
-
cooking process
-
coppering process
-
copying process
-
coupled cathodic-anodic process
-
cracking process
-
Creusot Loire Uddenholm process
-
critical process
-
cumulative process
-
cuprammonium process
-
curing process
-
CVD process
-
cyclic process
-
Cyclosteel process
-
Czochralski process
-
daguerre photographic process
-
dense-media process
-
Desco process
-
deterministic process
-
developing process
-
DH degassing process
-
diabatic process
-
diazo process
-
diffused planar process
-
diffusion process
-
diffusion transfer process
-
dip-forming process
-
direct iron process
-
direct process
-
direct reduction process
-
direct-sintering process
-
discrete-time process
-
discrete process
-
DLM process
-
Domnarvet process
-
Dored process
-
double-crucible process
-
double-epi process
-
doubling process
-
D-process
-
DR process
-
drop-molding process
-
dry adiabatic process
-
dry process
-
dry-blanch-dry process
-
duplex process
-
easy drawing process
-
EBM process
-
EBR process
-
EF-AOD process
-
electric furnace-argon oxygen decarburization process
-
electroarc process
-
electrocatalytic process
-
electrocolor process
-
electrodialysis reversal process
-
electroflux-remelting process
-
electromembrane process
-
electron-beam-melting process
-
electron-beam-refining process
-
electrophotoadhesive process
-
electrophotographic process
-
electroslag refining process
-
electroslag remelting process
-
electroslag remelt process
-
electrostatographic process
-
electrostream process
-
Elo-Vac process
-
elquench process
-
endothermic process
-
energy efficient process
-
entropy process
-
enzymatic process
-
EPIC process
-
epidemic process
-
epitaxial growth process
-
epitaxy growth process
-
ergodic process
-
ESR process
-
Estel process
-
etching process
-
exoergic process
-
exothermic process
-
extrusion-molded neck process
-
ferroprussiate process
-
Ferrox process
-
filming process
-
filtration-chlorination process
-
Finkl-Mohr process
-
FIOR process
-
first process
-
fixed-bed MTG process
-
flash steel direct reduction process
-
float process
-
float-and-sink process
-
float-zone process
-
flow process
-
fluid iron ore reduction process
-
fluid-bed MTG process
-
fluidized roasting process
-
fluid-sand process
-
FMC coke process
-
foaming process
-
foehn process
-
food-machinery and chemical coke process
-
foreground process
-
Foren process
-
FOS process
-
freeze concentration process
-
fuel-oxygen-scrap process
-
full-mold process
-
fusion-casting process
-
Futacuchi process
-
Gaussian process
-
Gero mold degassing process
-
Gero vacuum casting process
-
GGS process
-
girbitol process
-
gradual reduction process
-
growing process
-
growth process
-
gypsum-sulfuric acid process
-
Hall electrolytic process
-
Harris process
-
hazardous process
-
H-coal process
-
heat-transfer process
-
heavy-media process
-
hibernating process
-
HI-GAS process
-
high-frequency induction process
-
HIP process
-
H-iron process
-
Hoope process
-
hot isostatic pressing process
-
hot process
-
hot-metal process
-
hot-metal-and-scrap process
-
hot-type process
-
hydrogasification process
-
hydrotype process
-
HyL process
-
IC-DR process
-
image process
-
imbibition process
-
immiscible displacement process
-
implantation process
-
impurity doping process
-
in-bulk process
-
inchrome process
-
in-draw process
-
inductoslag-melting process
-
ingot casting direct rolling process
-
injection molding process
-
in-line process
-
Inred process
-
interpolation process
-
investment process
-
ion-implantation process
-
irreversible process
-
isentropic process
-
ISM process
-
isobaric process
-
isochoric process
-
isoenthalpic process
-
isoentropic process
-
isometric process
-
isoplanar process
-
isothermal process
-
iterative process
-
jet-expanding process
-
Kaldo process
-
katadyn process
-
Kawasaki-bottom-oxygen-process process
-
Kawasaki-Gas-Lime-Injection process
-
K-BOP process
-
KEK process
-
KG-LI process
-
kiln-reduction process
-
KIVCET cyclone smelting process
-
KIVCET process
-
knit-deknit process
-
koetherizing process
-
KR process
-
kraft process
-
lance bubbling equilibrium process
-
LBE process
-
LD-AB process
-
LD-AC process
-
LD-AOD process
-
LD-argon bottom process
-
LD-argon oxygen decarburization process
-
LD-CB process
-
LD-circle lance process
-
LD-CL process
-
LD-combination blow process
-
LD-HC top and botton blowing process
-
LDK process
-
LD-Kawasaki-Gas process
-
LD-KG process
-
LD-OB process
-
LD-OTB process
-
LD-oxygen bottom process
-
LD-oxygen-top-bottom process
-
lift-off process
-
liquefaction process
-
liquid gas plug process
-
liquid-phase process
-
loop transfer process
-
lost core process
-
low-waste technological process
-
LSI process
-
LVR process
-
LVS process
-
Mannesmann powder process
-
mapping process
-
Markovian process
-
Markov process
-
masking process
-
matte fuming process
-
melting process
-
mercast process
-
Midland-Ross process
-
Midrex process
-
migration process
-
miscible displacement process
-
miscible plug process
-
mixed autoregressive-moving average process
-
moist adiabatic process
-
Molynutz process
-
monochrome process
-
monolithic process
-
MOS process
-
MOSFET process
-
motion-picture process
-
moving average process
-
narrowband random process
-
Neely process
-
negative-positive process
-
Nitemper process
-
no pickle process
-
nonflow process
-
non-Gaussian process
-
Nord-Fuvo process
-
Nu-iron process
-
OBM process
-
OG process
-
OLP converter process
-
one-way process
-
open-hearth process
-
orbitread process
-
ore process
-
Orthoflow cracking process
-
Orthoforming process
-
orthogonal increment process
-
oxidation process
-
oxide-isolated process
-
oxygen-blow process
-
oxygen-gas process
-
oxygen-lancing process
-
oxygen-steelmaking process
-
packaging process
-
pad-batch dyeing process
-
pad-dry dyeing process
-
pad-jig dyeing process
-
pad-roll dyeing process
-
pad-steam dyeing process
-
pad-steam vat-print process
-
PAMCO-hot-alloy process
-
parent process
-
PCR process
-
Perrin process
-
PHA process
-
phonon process
-
photoelectric process
-
photomechanical process
-
photovoltaic process
-
pig iron-scrap process
-
pig-and-ore process
-
pigment padding dying process
-
pigment padding process
-
pigment process
-
pinatype process
-
planar process
-
plasma etching process
-
plasma etch process
-
plasma process
-
plasma-arc process
-
Plasmamelt process
-
Plasmared process
-
plaster mold process
-
plastic wirecut process
-
polytropic process
-
powder silicon ribbon process
-
power-press process
-
prepolymer process
-
prepress processes
-
pressure-driven membrane process
-
primuline process
-
propane-acid process
-
pulsating mixing process
-
Purex process
-
pushbench process
-
Q-BOP process
-
QDT process
-
quality basic oxygen process process
-
quasi-independent processes
-
quick and direct tapping process
-
ram process
-
random process
-
rapid solidification plasma deposition process
-
rayon continuous process
-
receiving process
-
reclamator reclaiming process
-
recurrent process
-
redox process
-
reducing process
-
reduction-smelting process
-
relaxation process
-
repetitive process
-
reproduction process
-
reversal process
-
reversible process
-
RH process
-
RH-OB process
-
ribbon process
-
R-N direct-reduction process
-
roasting-sintering process
-
roast-leaching process
-
robot-controlled process
-
rongalit-potash process
-
rotor process
-
rustless process
-
sample process
-
schoop process
-
scrap-and-pig process
-
scrap-conditioning process
-
scrap-ore process
-
screen printed process
-
self-developing process
-
self-healing process
-
semibatch process
-
semiconductor process
-
sending process
-
Sendzimir coating process
-
sequential process
-
silicon-gate MOS process
-
silicon-gate process
-
silk-screen process
-
single-pumpdown process
-
SIP process
-
skein spinning process
-
Skinner multiple-hearth process
-
slag minimum process
-
slip-casting process
-
slow down process
-
SLPM process
-
SL-RN metallization process
-
SL-RN reduction process
-
solid source diffusion process
-
solution regrowth process
-
solvent extraction-electrowinning process
-
solvent plug process
-
SOS process
-
spin-draw-texturizing process
-
spinylock process
-
sponge iron process
-
spontaneous process
-
Stanal process
-
stationary random process
-
STB process
-
steady-flow process
-
steam-blow process
-
steelmaking process
-
Stelmor process
-
step and repeat process
-
stochastic process
-
stuffer box process
-
submerged arc process
-
subtractive process
-
suck-and-blow process
-
Sulf BT process
-
Sulfinuz process
-
Sumitomo-slag all recycling process
-
Sumitomo-top-bottom process
-
Sursulf process
-
system process
-
TBM process
-
T-die process
-
Technamation process
-
thermal DeNOx process
-
Therm-i-Vac process
-
Thermo-Flow process
-
thermoplastic process
-
Thomas process
-
Thorex process
-
three-color process
-
Thyssen-blast-metallurgy process
-
Tifran process
-
tightly coupled processes
-
time-varying process
-
trichromatic process
-
triplex process
-
Tropenas converter process
-
Tufftride process
-
Tufftride TF1 process
-
uncertain process
-
user process
-
vacuum arc remelting process
-
vacuum casting process
-
vacuum deoxidation process
-
vacuum induction refining process
-
vacuum stream-droplet process
-
vacuum-arc degassing process
-
vacuum-carbodeoxidation process
-
vacuum-carbonate process
-
vacuum-induction melting process
-
vacuum-melting process
-
vacuum-metallothermic process
-
vacuum-oxygen-decarburization process
-
VAD process
-
VAR process
-
VAW process
-
VHSIC process
-
vigom process
-
VIR process
-
viscose process
-
visual process
-
VLSI process
-
VOD process
-
waiting process
-
water gas process
-
waterfall process
-
wet process
-
white-heart process
-
Zinal process
-
zinc distilling process -
11 machine
станок; машина || обрабатывать на станкеto machine all over — обрабатывать ( изделие) кругом
to CNC machine — обрабатывать на станке с ЧПУ, обрабатывать на станке с ЧПУ типа CNC, обрабатывать изделие на станке с ЧПУ, обрабатывать изделие на станке с ЧПУ типа CNC
to fix a machine — налаживать станок; ремонтировать станок
to machine off — срезать; отрезать
to machine the feature — обрабатывать элемент, обрабатывать элемент изделия
to program the machine — программировать ( обработку) на станке
machine with sliding frame — станок с подвижной рамой, станок с перемещающейся рамой
- 2 m3 machinemachine with traveling table for shaping — станок с подвижным столом для раскроя по формату, станок с перемещающимся столом для раскроя по формату
- 3-axis NC machine
- 50-taper machine
- 630-mm-class machine
- 90º plate shearing machine
- 90º sheet shearing machine
- above resonance-balancing machine
- abrasion testing machine
- abrasive belt head machine
- abrasive belt-grinding machine
- abrasive cold-sawing machine
- abrasive cutting-off machine
- abrasive disk machine
- abrasive electrochemical machine
- abrasive metal-cutting machine
- abrasive wear-testing machine
- AC machine
- accounting machine
- acyclic machine
- adapting machine
- adaptive control machine
- adaptive controlled machine
- adding machine
- adjustable multiple-spindle drilling machine
- adjustable rail machine
- adjustable rail milling machine
- advanced technology machine
- air-drying machine
- airspace profiling machine
- align boring machine
- all-electric machine
- all-geared machine
- all-hydraulic machine
- all-purpose machine
- all-steel machine
- alterating impact testing machine
- alterating stress testing machine
- aluminum machine
- analog machine
- ancillary inspection machine
- angle straightening machine
- angle-bending machine
- angle-iron bending machine
- angle-iron shearing machine
- anthropomorphic machine
- arm tapping machine
- armoring machine
- articulating arm tapping machine
- artificial intelligence-driven machine
- AS/R machine
- aspheric diamond turning machine
- assembling machine
- assembly machine
- ATC machine
- ATC-equipped machine
- atomic X-ray machine
- attrition testing machine
- autochucking machine
- automatic arc welding machine
- automatic assembly machine
- automatic bar machine
- automatic buffing machine
- automatic chucking machine
- automatic chucking-and-turning machine
- automatic continuous drum milling machine
- automatic data processing machine
- automatic drill fluting machine
- automatic forging machine
- automatic gas-cutting machine
- automatic gas-welding machine
- automatic machine
- automatic metal forming machine
- automatic polishing machine
- automatic punching machine
- automatic screw machine
- automatic straightening and cutting machine
- automatic strip-straightening machine
- automatic tapping machine
- automatic toolchanger machine
- automatic toolchanging machine
- automatic turret machine
- axial fatigue machine
- axis-controlled machine
- axle turning machine
- balancing machine
- baling machine
- ball race grinding machine
- ball screw machine
- ball-grinding machine
- ball-hardness testing machine
- balling machine
- band cutoff machine
- band machine
- band metal shearing machine
- band-filing machine
- band-grinding machine
- banding machine
- band-polishing machine
- bandsaw blade grinding machine
- bandsaw machine
- bandsaw welding machine
- bandsaw-brazing machine
- bandsawing machine
- bandsaw-sharpening machine
- bar automatic turning machine
- bar feed machine
- bar feed turning machine
- bar machine
- bar-and-chucking machine
- bar-and-chucking turning machine
- bar-and-tube straightening machine
- bar-bending machine
- bar-chamfering machine
- bar-cutting machine
- bar-pointing machine
- bar-polishing machine
- barreling machine
- bar-shearing machine
- bar-skimming machine
- bar-straightening machine
- bar-tagging machine
- bar-type boring machine
- base-type milling machine
- basic machine
- batch-produced machine
- battery spot-welding machine
- beading machine
- bearing roller lapping machine
- bed-type configuration machine
- bed-type drilling machine
- bed-type machine
- bed-type milling machine
- below resonance balancing machine
- belt-driven machine
- belt-grinding machine
- belt-polishing machine
- bench-grinding machine
- bench-mounted machine
- bench-top machine
- bench-type machine
- bending and forming machine
- bending machine
- between-centers turning machine
- bevel gear hobbing machine for spiral bevel gears
- bevel gear hobbing machine for straight gears
- bevel gear lapping machine
- bevel gear making machine
- bevel gear testing machine
- bevel grinding machine
- beveling machine
- bidirectional broaching machine
- binding machine
- bipedal walking machine
- bitting machine
- blade-edging machine
- blade-grinding machine
- blanking machine
- blending machine
- blind spline broach machine
- blind spline broaching machine
- block-and-head broaching machine
- blocked machine
- blower machine
- blowing machine
- blow-ramming molding machine
- blue-print machine
- blue-printing machine
- bobbin machine
- bolt head forging machine
- bolting machine
- bolt-maker machine
- bolt-making machine
- bolt-pointing machine
- bolt-screwing machine
- bolt-threading machine
- bolt-upsetting machine
- bonded machine
- bore centerless grinding machine
- bore-sizing machine
- bore-slotting machine
- boring and milling machine
- boring machine
- boring/facing machine
- boring, drilling and milling machine
- boring, milling and drilling machine
- bottleneck machine
- box-column drilling machine
- bracket-drilling machine
- bracket-milling machine
- braiding machine
- brazing machine
- breaking machine
- bridge machine
- Bridgeport milling machine
- bridge-type milling machine
- Brinell's machine
- broach pulldown machine
- broach-and-center machine
- broach-grinding machine
- broaching tool sharpening machine
- broach-sharpening machine
- brushing machine
- buffing machine
- built-from-scratch machine
- bunching machine
- burn machine
- burning machine
- burnishing machine
- burr-cutting machine
- burring machine
- busy machine
- butt-seam welding machine
- butt-welding machine
- by-level broaching machine
- cabinet-based machine
- cable tension testing machine
- cable-making machine
- cable-stranding machine
- cam automatic screw machine
- cam machine
- cam-controlled machine
- cam-controlled screw machine
- cam-cutting machine
- cam-driven machine
- cam-driven screw machine
- cam-grinding machine
- cam-measuring machine
- cammed screw machine
- cam-milling machine
- cam-operated screw machine
- camshaft-grinding machine
- capable machine
- capacitor discharge spot-welding machine
- capacitor spot-welding machine
- capstan drive machine
- car wheel grinding machine
- carbide tool grinding machine
- carbide tool lapping machine
- carousel machine
- cast iron machine
- cast machine
- casting cleaning machine
- casting machine
- casting washing machine
- cavity sinking EDM machine
- cell machine
- center column rotary index machine
- center column rotary indexing machine
- center hole grinding machine
- center hole lapping machine
- center-drilling machine
- centerdrive machine
- centering and end facing machine
- centering and facing machine
- centering machine
- centerless bar turning machine
- centerless cylindrical grinding machine
- centerless grinding machine
- centerless lapping machine
- centerless polishing machine
- centerless turning machine
- center-type machine
- center-type turning machine
- centrifugal babbiting machine
- centrifugal casting machine
- centrifugal machine
- centrifugal sand-throwing machine
- ceramic-cutting machine
- chain broaching machine
- chain making machine
- chain shotblasting machine
- chain tension testing machine
- chain testing machine
- chain-operated broaching machine
- chamfering machine
- charge-discharge machine
- Charpy impact machine
- Charpy machine
- charting machine
- check balancing machine
- checking machine
- chip-making machine
- chip-producing machine
- chucker machine
- chucker-and-bar machine
- chucking machine
- circle cutting machine
- circuit board drilling machine
- circular cold sawing machine
- circular continuous milling machine
- circular cutoff machine
- circular dividing machine
- circular graduating machine
- circular grinding machine
- circular hot sawing machine
- circular saw blade grinding machine
- circular saw sharpening machine
- circular sawing machine
- circular seam-welding machine
- circumferential seam-welding machine
- cleaning machine
- closing machine
- CNC high-speed routing machine
- CNC machine
- CNC screw machine
- CNC Swiss-type screw machine
- CNC/CMM machine
- CNC-manual machine
- CNC-operated machine
- CNC-retrofitted machine
- CO2 laser cutting machine
- coil banding machine
- coil downending machine
- coiling machine
- coil-processing machine
- coil-strapping machine
- coil-stripping machine
- coil-winding machine
- coil-wrapping machine
- cold saw-cutting-off machine
- cold thread rolling machine
- cold upsetting machine
- cold-chamber die-casting machine
- cold-forging machine
- cold-forming machine
- cold-heading machine
- cold-sawing machine
- collecting machine
- column drilling machine
- column-and-knee-type machine
- column-and-knee-type milling machine
- combination jarring squeezing molding machine
- combined boring-and-honing machine
- combined curve-cutting and nibbling machine
- combined gear hobbing and gear shaping machine
- combined machine
- combined milling-turning machine
- combined planing-and-milling machine
- combined shearing machine
- combined surface planing and thicknessing machine
- combined vertical and horizontal broaching machine
- commercial machine
- commutator machine
- complementary machines
- component cleaning machine
- component insertion machine
- composite boring-and-honing machine
- compound machine
- compound table machine
- compound universal milling machine
- compressed air driven machine
- compressed gas machine
- compression-testing machine
- compression-type machine
- computer-controlled industrial machine
- computer-controlled machine
- computerized machine
- computing machine
- condenser spot-welding machine
- cone pulley machine
- conical rotor machine
- constant cycling machine
- container erecting-and-forming machine
- container-cleaning machine
- container-washing machine
- continuous chain broaching machine
- continuous drum milling machine
- continuous motion machine
- continuous motion orienting-and-tapping machine
- continuous path NC machine
- continuous path tape controlled machine
- continuous roll-forming machine
- continuous rotary milling machine
- continuous tapping machine
- continuous wire EDM machine
- continuous wire machine
- continuous-casting machine with bending discharge
- continuous-casting machine
- continuously running machine
- contour band machine
- contour production machine
- contour squeeze molding machine
- contouring band machine
- contouring machine
- contour-milling machine
- contour-shaping machine
- controlling machine
- conventional machine
- conventional manually-operated machine
- conventionally operated machine
- converted lathe-and-milling machine
- converted machine
- convertible planing machine
- conveying machine
- cooling machine
- coordinate boring machine
- coordinate boring-and-milling machine
- coordinate drilling machine
- coordinate drilling-boring-and-milling machine
- coordinate inspection machine
- coordinate measuring machine
- coping machine
- copy control machine
- copy grinding machine
- copying machine
- copy-milling machine
- copy-piercing machine
- copy-planing machine
- core blowing machine
- core jarring machine
- core shooting machine
- core wire straightening machine
- core-making machine
- corrosion-fatigue testing machine
- corrugating machine
- countersink machine
- countersinking machine
- coupling machine
- crack detection machine
- crankpin-turning machine
- crankshaft-balancing machine
- crankshaft-grinding machine
- crankshaft-lapping machine
- crankshaft-milling machine
- crankshaft-regrinding machine
- crank-shaping machine
- crank-slotting machine
- creasing machine
- creep feed grinding machine
- creep testing machine
- crimping machine
- crocodile shearing machine
- cropping machine
- cross roll-forging machine
- cross-wire welding machine
- crosswise veneer splicing machine
- crushing machine
- cupping machine
- curling machine
- curtain coating machine
- curve-cutting machine
- curved tooth bevel gear cutting machine
- curve-milling machine
- curvilinear slotting machine
- curving machine
- custom metalcutting machine
- custom-assembled machine
- custom-build machine
- customized machine
- cutoff band machine
- cutoff machine
- cutter inspection machine
- cutter-checking machine
- cutter-grinding machine
- cutter-relieving machine
- cutting machine with coordinate drive
- cutting machine
- cutting-off machine
- cylinder-boring machine
- cylinder-grinding machine
- cylinder-honing machine
- cylindrical coordinate-measuring machine
- cylindrical external grinding machine
- cylindrical gear hobbing machine
- cylindrical gear shaping machine
- cylindrical rotor machine
- cylindrical turning machine
- cylindrical-die thread-rolling machine
- data processing machine
- database machine
- DCC coordinate measuring machine
- De Levaud casting machine
- deburring machine
- decoiling machine
- dedicated proving machine
- dedicated special machine
- deencapsulation machine
- deep drawing machine
- deep hole boring machine
- deep hole drilling machine
- deep hole drilling/boring machine
- deep rolling machine
- defective machine
- degreasing machine
- descaling machine
- deseaming machine
- desktop machine
- destination machine
- detangling machine
- detwisting machine
- development machine
- dial machine
- dial-index machine
- dial-indexing machine
- dial-type machine
- dial-type transfer machine
- diamond die polishing machine
- diamond machine
- diamond pyramid hardness machine
- diamond-boring machine
- diamond-contouring machine
- diamond-honing machine
- diamond-impregnated wire cutting machine
- diamond-turning machine
- die head chaser grinding machine
- die-and-mold grinding machine
- die-casting machine
- die-filing machine
- die-grinding machine
- die-milling machine
- die-polishing machine
- die-ripping machine
- die-shaping machine
- die-sinking and hole-contouring machine
- die-sinking machine
- die-sinking milling machine
- die-sinking spark erosion machine
- die-stamping machine
- digging machine
- digitizing and scanning machine
- digitizing machine
- digitizing/cutting machine
- digitizing-metalcutting machine
- dimensional gaging machine
- direct computer controlled machine
- direct current commutator machine
- direct stress machine
- direct stress testing machine
- direct-drive machine
- discharge machine
- disk machine
- disk sanding machine
- disk-cutting machine
- disk-grinding machine
- disk-resurfacing machine
- dividing machine
- DMM machine
- DNC-controlled machine
- DNC-like machine
- DNC-supported machine
- double duplex milling machine
- double portal cutting machine
- double wheel lapping machine
- double-cantilever cutting machine
- double-column milling machine
- double-column planing machine
- double-column slideway grinding machine
- double-disk grinding machine
- double-end facing-and-centering machine
- double-end fine boring machine
- double-end grinding machine
- double-end machine
- double-end mill-and-centering machine
- double-end milling machine
- double-ended centering and end-facing machine
- double-ended centering machine
- double-ended drilling machine
- double-ended machine
- double-ended milling machine
- double-faced mill-and-centering machine
- double-fed asynchronous machine
- double-gantry milling machine
- double-head machine
- double-housing machine
- double-housing milling machine
- double-lap lapping and polishing machine
- double-punching machine
- double-ram vertical broaching machine
- double-roll forming machine
- double-shaping machine
- double-slide vertical broaching machine
- double-strand pig machine
- dovetailing machine
- dowel-insert machine
- down machine
- downstroking machine
- drafting machine
- draw machine
- drawing machine
- dream machine
- dressing machine
- drill and tap machine
- drill fluting machine
- drill machine
- drill press machine
- drill/tap machine
- drill-grinding machine
- drillhead-changing machine
- drilling machine
- drilling, milling and boring machine
- drilling-and-boring machine
- drilling-and-counterboring machine
- drilling-and-milling machine
- drilling-and-routing machine
- drilling-and-tapping machine
- drilling-and-threading machine
- drilling-tapping machine
- drill-layout machine
- drooping-characteristic machine
- drop-testing machine
- drum-type continuous milling machine
- drum-type milling machine
- dry cutting machine
- dry-floor machine
- drying machine
- dual co-axial spindle and subspindle turning machine
- dual controlled manual/CNC machine
- dual machine
- dual planing-and-milling machine
- dual-gantry machine
- dual-head machine
- dual-pallet machine
- dual-purpose machine
- dual-ram surface-broaching machine
- dual-station machine
- ductility testing machine
- dummy machine
- dumping molding machine
- duplex machine for rail ends
- duplex machine
- duplex multiple spindle machine
- duplex vertical broaching machine
- duplex-head milling machine
- duplex-manufacturing bed-type milling machine
- duplex-type of surface broaching machine
- duplicating machine
- duplicating milling machine
- dynamic balancing machine
- eager-beaver pulldown broaching machine
- earth-moving machine
- EB welding machine
- ECM machine
- economically priced machine
- ED grinding machine
- ED wire cutting machine
- ED-copying machine
- ED-cutting-off machine
- eddy current machine
- eddy current test machine
- edge-beveling machine
- edge-chamfering machine
- edge-cutting machine
- edge-knurling machine
- edge-milling machine
- edge-planing machine
- edge-trimming machine
- edging machine
- EDM diesinking machine
- EDM machine
- EDM texturing machine
- EDM wire machine
- EDM wire-cut machine
- ED-sinking machine
- educational machine
- efficiency testing machine
- eight-axis NC machine
- electric drive machine
- electric machine
- electric molding machine
- electrical discharge die-sinking and hole-contouring machine
- electrical discharge machine
- electrical discharge outcutting machine
- electrical discharge profiling machine
- electrically-operated machine
- electric-spark cutting machine
- electrochemical grinding machine
- electrode feeding machine
- electro-discharge drilling machine
- electro-discharge grinding machine
- electrolytic grinding machine
- electrolytic machine
- electrolytic tinning machine
- electrolytically assisted cutting-off machine
- electrolytically assisted machine
- electromagnetic molding machine
- electron beam drilling machine
- electron beam machine
- electron beam welding machine
- electronic data processing machine
- electroplating machine
- electrostatic stored-energy machine
- elevating beam boring machine
- elevating head milling machine
- elevating machine
- elevating rail machine
- elevator machine
- embossing machine
- encapsulating machine
- end preparation machine
- end-finishing machine
- end-finishing-centering machine
- end-grinding machine
- ending-and-centering machine
- end-turning machine
- endurance testing machine for repeated torsion
- endurance testing machine
- end-working machine
- energy machine
- energy transforming machine
- energy-intensive machine
- engraving form duplicating machine
- engraving machine
- engraving-type form duplicating machine
- Erichsen cupping machine
- Erichsen ductility machine
- eroding machine
- erosion machine
- etch machine
- etching machine
- exhibited machine
- expanding machine
- explosive force molding machine
- extended-travel machine
- extension machine
- external angular plunge grinding machine
- external broaching machine
- external cylindrical centerless grinding machine
- external grinding machine
- external honing machine
- extracting machine
- extruding machine
- extrusion machine
- face-grinding machine
- face-milling machine
- facing machine
- facing-and-centering machine
- facsimile machine
- failed machine
- falling weight testing machine
- fastener tapping-and-orienting machine
- fatigue bending machine
- fatigue testing machine for alternating torsion
- fatigue testing machine
- fault detection machine
- fax machine
- feedback machine
- field-tested machine
- file-cutting machine
- file-testing machine
- filing machine
- filing-and-sawing machine
- filling machine
- fine boring machine
- fine countersinking machine
- fine-blanking machine
- finish boring machine
- finishing machine
- finite memory machine
- finite state machine
- first-off machine
- fir-tree broachinng machine
- fir-tree milling machine
- five-side machine
- five-sided machine
- fixed beam machine
- fixed bed milling machine
- fixed bed-type milling machine
- fixed cycle machine
- fixed machine
- fixed post machine
- fixed sequence machine
- fixed weighing machine
- fixed-column machine
- fixed-table machine
- flame-cutting machine
- flame-profiling machine
- flanging machine
- flash butt-welding machine
- flat die thread-rolling machine
- flattening machine
- flexible assembly machine
- flexible machine
- flexible shaft filing machine
- flexible transfer machine
- flexing machine
- floor charging machine
- floor horizontal boring machine
- floor machine
- floor-type horizontal boring machine
- floor-type machine
- floor-type stripper machine
- flotation machine
- Floturn machine
- flowturning machine
- FLS machine
- fluid-actuated machine
- fluid-feed machine
- flute-grinding machine
- flute-milling machine
- fluting machine
- flying cutoff machine
- FM machine
- FMS machine
- FMS-capable machine
- foil butt-seam welding machine
- folding machine
- foot-operated welding machine
- forge rolling machine
- forging machine
- form cutter milling machine
- form-duplicating machine
- form-grinding machine
- forming machine
- form-milling machine
- form-testing machine
- foundry machine
- four-ball machine
- four-pallet machine
- four-roll bending machine
- four-roll forming machine
- four-roll sheet bending machine
- four-strand continuous casting machine
- friction disk sawing machine
- front-loading turning machine
- front-operated turning machine
- full-automatic turret screw machine
- furnace hoisting machine
- furnace-threading machine
- fusion cutting-off machine
- gaging machine
- gag-straightening machine
- galvanizing machine
- gang drilling machine
- gang slitting machine
- ganghead replaceable-type machine
- gangspindle drilling machine
- gang-tooled machine
- gang-type drilling machine
- gantry cutting machine
- gantry-loaded machine
- gantry-type machine
- gantry-type milling machine
- gantry-type plano-milling machine
- gas-cutting machine
- gear cutter grinding machine
- gear fine processing machine
- gear grinding and polishing machine
- gear lapping and polishing machine
- gear machine
- gear profile grinding machine
- gear tooth chamfering machine
- gear tooth grinding machine
- gear tooth inspection machine
- gear tooth rounding machine
- gear-burnishing machine
- gear-chamfering machine
- gear-checking machine
- gear-cutting machine
- gear-deburring machine
- geared head machine
- gear-finishing machine
- gear-grinding machine
- gear-hardening machine
- gear-hobbing machine for spur gears
- gear-hobbing machine
- gear-honing machine
- gear-lapping machine
- gear-making machine
- gear-manufacturing machine
- gear-measuring machine
- gear-milling machine
- gear-polishing machine
- gear-producing machine
- gear-rolling machine
- gear-shaping machine
- gear-shaving machine
- gear-sizing machine
- gear-testing machine
- general-purpose flat surface broaching machine
- general-purpose machine
- generating machine
- gilding machine
- gimbals head rolling machine
- gold rolling machine
- grading machine
- grinder-milling machine
- grinding machine for drill bits
- grinding machine with rotating column
- grinding machine
- grinding-and-lapping machine
- grinding-and-polishing machine
- grooving machine
- G-Tech machine
- Guillotine knife grinding machine for long knives
- Guillotine knife grinding machine
- gun-boring machine
- gun-drill machine
- gun-drilling machine
- gun-rifling machine
- gun-welding machine
- hacksawing machine
- half-NC machine
- hammer impact machine
- hammering machine
- hand-driven cutting machine
- hand-fed machine
- hand-held machine
- hand-load machine
- hand-milling machine
- hand-operated molding machine
- hand-operated press-molding machine
- hand-operated squeezing machine
- hard bearing balancing machine
- hard X-ray machine
- hardening machine
- hardness-testing machine
- hardwired NC machine
- Hazellet continuous strip casting machine
- head-changer machine
- head-changing machine
- heading machine
- headstock moving-type automatic screw machine
- head-to-head machines
- heating machine
- heavy machine
- heavy-duty machine
- heavy-hogging machine
- hexapod machine
- high-accuracy machine
- high-energy-rate forging machine
- high-energy-rate machine
- high-frequency ac welding machine
- high-frequency hardening machine
- highly accurate machine
- highly productive machine
- high-performance machine
- high-precision machine
- high-production machine
- high-productivity machine
- high-specification machine
- high-speed drafting machine
- high-speed machine
- high-speed spindle machine
- high-technology machine
- high-temperature fatigue testing machine
- high-velocity ram machine
- high-volume machine
- hinged roll-over machine
- hitch-feed cut-off machine
- HNC machine
- hob back-off machine
- hob tooth profile grinding machine
- hobbing machine
- hob-grinding machine
- hob-sharpening machine
- hoisting machine
- hole milling-and-reaming machine
- hole-making machine
- hole-punching machine
- hone machine
- honing machine
- honing-and-lapping machine
- horizontal arm measuring machine
- horizontal band machine
- horizontal bar machine
- horizontal boring machine
- horizontal broaching machine
- horizontal casting machine
- horizontal continuous broaching machine
- horizontal continuous drilling machine
- horizontal forging machine
- horizontal indexing machine
- horizontal internal broaching machine
- horizontal machine
- horizontal milling machine
- horizontal plate-bending machine
- horizontal punching machine
- horizontal ram machine
- horizontal shaping machine
- horizontal slotting machine
- horizontal spindle surface grinding machine
- horizontal square T-planer type milling machine
- horizontal-type machine
- horizontal-vertical milling machine
- hose-type sandblast tank machine
- host machine
- hot plate straightening machine
- hot-box core-making machine
- hot-chamber die-casting machine
- hot-heading machine
- hot-metal sawing machine
- hsc machine
- hybrid machine
- hydraulic axis machine
- hydraulic balancing machine
- hydraulic bloom shearing machine
- hydraulic core knockout machine
- hydraulic machine
- hydraulic molding machine
- hydraulic pipe testing machine
- hydraulic riveting machine
- hydraulic shearing machine
- hydraulic squeeze machine
- hydraulically-assisted machine
- hydraulically-driven machine
- hydraulically-powered machine
- hydraulic-assisted machine
- hydraulic-driven machine
- hydraulic-electric machine
- hydraulic-powered machine
- hydro-copying machine
- hydrostatic machine
- hydrostatic-extrusion machine
- imitation machine
- impact machine
- impact pendulum-type testing machine
- impact tension machine
- impact-test machine
- impact-testing machine
- impulse-cutting machine
- impulse-forming machine
- impulsive machine
- inclined tapping machine
- indentation machine
- index machine
- index milling machine
- indexer machine
- indexing chuck machine
- indexing drum milling machine
- indexing head machine
- indexing machine
- indexing turret machine
- induction hardening machine
- induction softening machine
- industrial machine
- informational machine
- ingot stripper machine
- ingot-planing machine
- ingot-scalping machine
- ingot-slicing machine
- injection-molding machine
- in-line machine
- in-line synchronous machine
- in-line transfer machine
- innovative machine
- inspection and measuring machine
- inspection machine
- integrated turning/milling machine
- intelligent machine
- intermittently manned machine
- internal broaching machine
- internal grinding machine
- internal grooving machine
- internal keyseating machine
- internal lapping machine
- internal planetary-type grinding machine
- internal thread grinding machine
- internal-and-external broaching machine
- internal-external inspection machine
- internal-part-transfer vertical broaching machine
- inverted vertical turning machine
- involute profile measuring machine
- ion beam machine
- iron shearing machine
- jar molding machine
- jar ramming machine
- jar ramming roll-over molding machine
- jarring machine
- jig milling machine
- jig-borer-class machine
- jig-boring machine
- jig-drilling machine
- jig-grinding machine
- jigless machine
- job-dedicated machine
- joggling machine
- jointed arm drilling machine
- jolt core-making machine
- jolt molding machine
- jolt pattern-draw molding machine
- jolt roll-over pattern-draw molding machine
- jolt squeeze molding machine
- journal-milling machine
- journal-turning machine
- Kenyon machine
- key machine
- key-and-slot milling machine
- key-bitting machine
- key-cutting machine
- key-duplicating machine
- keyseating and slot milling machine
- keyseating machine
- keyseating milling machine
- keyway-cutting machine
- keyway-milling machine
- keyway-seating machine
- keyway-slotting machine
- kneading machine
- knee-and-column machine
- knee-and-column milling machine
- knee-and-column-type milling machine
- kneeless-type milling machine
- knee-type machine
- knee-type milling machine
- knife-grinding machine
- knitting machine
- knurling machine
- labeling machine
- lamination segments blanking machine
- lapping and polishing machine
- lapping machine
- large-dimensioned machine
- large-scale machine
- large-size machine
- laser beam cutting machine
- laser beam machine
- laser die-sinking machine
- laser etch machine
- laser etching machine
- laser-assisted machine
- laser-controlled machine
- laser-cutting machine
- laser-hardening machine
- laser-scribing machine
- lathe machine
- laying-out machine
- lay-out machine
- lead screw tapping machine
- lead screw testing machine
- leakage-testing machine
- lens-grinding machine
- letter and paper cup machine
- leveling machine
- lever punching machine
- lever testing machine
- leverage proportioned tracing milling machine
- lever-type Brinell machine
- lifting machine
- light machine
- light production machine
- light-duty machine
- lightly manned machine
- light-weight machine
- limited-interference machine
- linear path-controlled machine
- linear station machine
- line-boring machine
- line-controlled machine
- live spindle machine
- lock-seaming machine
- long travel machine
- long-feed cut-off machine
- longitudinal circular cold sawing machine
- longitudinal dividing machine
- longitudinal grinding machine
- longitudinal seam-welding machine
- long-lasting machine
- long-running machine
- long-stroke broaching machine
- long-stroke machine
- long-term strength testing machine
- low-pressure die-casting machine
- machine of compact construction
- machine of dieing design
- machine of the state of the art
- machining machine
- magazine bar feed machine
- magnetic cobbing machine
- magnetic force welding machine
- magnetic forming machine
- maintenance-free machine
- manual machine
- manual-CNC machine
- manual-CNC turning machine
- manually controlled machine
- manually jogged machine
- manually tended machine
- manual-toolchange machine
- manufacturing bed-type milling machine
- manufacturing machine
- manufacturing milling machine
- manufacturing-oriented machine
- manufacturing-type machine
- marking machine
- marking-off machine
- marking-out machine
- mass centering machine
- mass-production machine
- master machine
- match-plate molding machine
- material testing machine
- material-cutting machine
- MDI-controlled machine
- measurement machine
- measuring machine
- mechanical drive machine
- mechanically driven machine
- medium duty machine
- medium travel machine
- mesh-welding machine
- metal slitting machine
- metal testing machine
- metal-cutting machine
- metal-folding machine
- metal-forming machine
- metal-planing machine
- metal-removing machine
- metal-sawing machine
- metal-working machine
- metamorphic machine
- metrology machine
- microcomputer-based NC machine
- microdrilling machine
- microfinishing machine
- micromilling machine
- microscopic drilling machine
- mill/turn machine
- mill-drill-bore machine
- milling cutter grinding machine
- milling machine with table of fixed height and with vertical spindle
- milling machine with table of variable height and with horizontal spindle
- milling machine with table of variable height
- milling machine
- milling/drilling machine
- milling/turning machine
- milling-and-boring machine
- milling-and-centering machine
- minicomputer-controlled machine
- minicoordinate boring machine
- minicoordinate drilling machine
- miter saw machine
- miter-cutting machine
- mitering saw machine
- mixing machine
- mobile gantry-type machine
- mobile weighing machine
- mock-up machine
- model engineers milling machine
- modular industrial machine
- modular machine
- modular-type machine
- molding machine
- mortising machine
- motor-driven welding machine
- movable bridge machine
- movable column machine
- movable saddle machine
- moving bridge machine
- moving column/fixed table machine
- moving machine
- moving table machine
- multiaxis machine
- multidie machine
- multidisciplinary machine
- multidrilling machine
- multifunction machine
- multihead automatic arc-welding machine
- multihead changer machine
- multihead machine
- multihead milling machine
- multiloaded machine
- multioperation machine
- multioperational machine
- multipallet machine
- multiple machines
- multiple secondary-operation machine
- multiple second-operation machine
- multiple-beam flame planing machine
- multiple-blowpipe machine
- multiple-broach broaching machine
- multiple-burner machine
- multiple-diameter grinding machine
- multiple-diameter turning machine
- multiple-head broaching machine
- multiple-head drilling machine
- multiple-operation machine
- multiple-purpose machine
- multiple-roll machine
- multiple-spindle automatic machine
- multiple-spindle bar machine
- multiple-spindle machine
- multiple-spot welding machine
- multiple-station machine
- multiple-station transfer machine
- multiple-table milling machine
- multiple-torch machine
- multiple-transformer machine
- multiple-transformer spot-welding machine
- multiproduct machine
- multipurpose broaching machine
- multipurpose shearing machine
- multireduction wire-drawing machine
- multiroll bar straightening machine
- multiroller machine
- multisensor coordinate machine
- multispecimen testing machine
- multispindle automatic screw machine
- multispindle bar machine
- multispindle head machine
- multispindle head-changing machine
- multispindle screw machine
- multispot machine
- multistation indexing transfer machine
- multistation machine
- multisurface machine
- multitool turning machine
- multiunit drilling machine
- multiuniversal machine
- multiway drilling machine
- nail-making machine
- narrow belt sanding machine
- NC machine
- needle die grinding machine
- needle die polishing machine
- nibbling machine
- nibbling, milling and punching machine
- nipple-threading machine
- No.40-taper-tool machine
- No.50-taper machine
- noncantilevered machine
- nonferrous sawing machine
- non-NC machine
- nonstock machine
- nonsystem machine
- normal accuracy machine
- normal manned NC machine
- notching machine
- numbering machine
- nut-castellating machine
- nut-chamfering machine
- nut-deburring machine
- nut-facing machine
- nut-making machine
- nut-running machine
- nut-setting machine
- nut-shaping machine
- nut-tapping machine
- nut-threading machine
- OD grinding machine
- OD machine
- off-line machine
- offset milling machine
- off-site machine
- oil hydraulic machine
- oil roll machine
- oil-grooving machine
- oiling machine
- omnimil versatile machine
- one-axis machine
- one-head automatic arc-welding machine
- one-hit machine
- one-meter machine
- one-off machine
- one-operator machine
- on-line machine
- open-side milling machine
- open-side planing machine
- open-side plano-milling machine
- open-sided milling machine
- operator-independent machine
- operator-initiated machine
- operator-positionable machine
- operator-programmed machine
- opposed spindle machine
- optical jig boring machine
- optical pattern tracing machine
- optical profile grinding machine
- optical reading machine
- original equipment CNC machine
- orthodox machine
- orthogonally movable machine
- oscillating bandsaw machine
- other machines
- outfacing machine
- outmoded machine
- out-of-alignment machine
- overdesigned machine
- overhead gantry machine
- overhead grinding machine
- overhead recessing machine
- overhead traveling drilling machine
- overwrapping machine
- own-use machine
- oxyacetylene-cutting machine
- oxyfuel burn machine
- packaging machine
- pack-checking machine
- packing machine
- paddle blade-type mixing machine
- paint machine
- pallet pool machine
- pallet shuttle machine
- pallet transfer machine
- pallet-change machine
- palletized machine
- pallet-loading machine
- pallet-type transfer machine
- pantograph-engraving machine
- pantographic engraving machine
- pantograph-type milling machine
- paper-cutting machine
- parting machine
- part-transfer vertical broaching machine
- pattern draw machine
- pattern milling machine
- pattern-controlled machine
- pattern-tracing machine
- PCB machine
- PCB-drilling machine
- PC-equipped machine
- PC-governed machine
- pedal-operated welding machine
- pedal-triggered machine
- pedestal spot-welding machine
- pedestal-drilling machine
- pedestal-grinding machine
- peeling machine
- peening machine
- pendant controlled machine
- pendulum impact testing machine
- percussion-welding machine
- perforating machine
- periodic machine
- physico-chemical machine
- pick-and-place machine
- pickling machine
- piercing machine
- pig casting machine
- pillar-drilling machine
- pilot machine
- pincer spot-welding machine
- pinion-generating machine
- pin-lift molding machine
- pin-making machine
- pin-on-disk wear test machine
- pipe cut-off machine
- pipe-bending machine
- pipe-beveling machine
- pipe-beveling/cutting machine
- pipe-chamfering machine
- pipe-cropping machine
- pipe-crushing machine
- pipe-cutting machine
- pipe-expanding machine
- pipe-facing machine
- pipe-flanging machine
- pipe-flaring machine
- pipe-swabbing machine
- pipe-testing machine
- pipe-threading machine
- pipe-welding machine
- piston contouring machine
- piston ring grinding machine
- piston-turning machine
- pit planing machine
- pit-based broaching machine
- pit-type planing machine
- pivot-head machine
- placing machine
- plain grinding machine
- plain horizontal knee-type milling machine
- plain-way machine
- planer-type boring machine
- planer-type machine
- planer-type milling machine
- planer-type surface grinding machine
- planetary grinding machine
- planetary milling machine
- planetary-type thread milling machine
- planing machine
- planing-and-milling machine
- planomilling machine
- plano-type boring-and-milling machine
- plano-type surface grinding machine
- plasma arc machine
- plasma-cutting machine
- plastics extrusion machine
- plate-bending machine
- plate-cutting machine
- plate-edge beveling machine
- plate-edge planing machine
- plate-fabricating machine
- plate-flanging machine
- plate-flattening machine
- plate-leveling machine
- platen TL machine
- platen-tooled machine
- plate-punching machine
- plate-shearing machine
- plate-straightening machine
- plate-working machine
- platform weighing machine
- plating machine
- plier spot-welding machine
- plugboard/capstan machine
- plugboard-control machine
- plugboard-controlled machine
- plug-ramming machine
- plunge-grinding machine
- plunger core machine
- plunger-type pickling machine
- pneumatic hand machine
- pneumatic machine
- pneumatic molding machine
- pointing machine
- pointing rolling machine
- point-to-point NC machine
- polishing machine
- polygonal turning machine
- polyvalent machine
- portable facing machine
- portable machine
- portable milling machine
- portable valve grinding machine
- portal cutting machine
- portal machine
- portal-frame machine
- portal-type machine
- portal-type plano-milling machine with variable height cross rail
- position control machine
- positive-displacement hydraulic machine
- positive-displacement pneumatic machine
- pot-broach vertical broaching machine
- pot-broaching machine
- powder metal compacting machine
- power machine
- power-driven machine
- power-operated molding machine
- precision boring machine
- precision-controlled machine
- precision-drawing machine
- preparatory NC machine
- preset machine
- presetting machine
- press-molding machine
- press-type machine
- pressure die-casting machine
- press-welding machine
- primary turning machine
- printing machine
- prior art machine
- prior art-type machine
- prismatic coordinate inspection machine
- prismatic machine
- prismatic-type indexing machine
- process machines
- processing machine
- process-specialized machine
- production machine
- product-oriented machine
- profile measurement machine
- profile-cutting machine
- profile-grinding machine
- profile-iron bending machine
- profile-milling machine
- profiler machine
- profiling machine
- profiling milling machine
- program sequence controlled machine
- programmable machine
- programmable-controlled machine
- progressive broach machine
- projection form grinding machine
- projection welding machine
- prototype machine
- proving machine
- pull test machine
- pull-broaching machine
- pull-down broaching machine
- pulling-in machine
- pull-type broaching machine
- pull-type machine
- pull-up broaching machine
- punch machine
- punching and shearing machine
- punching machine
- purpose-built machine
- purpose-designed machine
- push-broaching machine
- push-cut shaping machine
- push-down broaching machine
- push-pull fatigue-testing machine
- push-up broaching machine
- qualifying machine
- quenching machine
- rack milling machine
- rack-and-pinion machine
- rack-and-pinion-operated machine
- radial arm-drilling machine
- radial arm-sawing machine
- radial articulated-arm cutting machine
- radial drilling machine
- radial-and-pillar drilling machine
- radiusing machine
- rail end milling machine
- rail-bending machine
- rail-cambering machine
- rail-drilling machine
- rail-straightening machine
- railway axle grinding machine
- ram impact machine
- ram milling machine
- ram-boring machine
- ram-head milling machine
- ramming molding machine
- ram-type boring and horizontal milling machine
- ram-type EDM machine
- ram-type milling machine
- ram-type tooling machine
- ratio cutting machine
- raw component measuring machine
- reading machine
- reaming machine
- reaming-and-facing machine
- recessing machine
- reciprocating cutoff machine
- reciprocating grinding machine
- reciprocating machine
- reciprocating-die machine
- reciprocating-table surface grinding machine
- recognizing machine
- recoiling machine
- rectifier-type welding machine
- redesigned machine
- reference machine
- refrigerating machine
- regrinding machine
- reinforcing bar bending machine
- reinforcing rod cropping machine
- relieving machine
- remote-control machine
- remote-controlled machine
- renewed machine
- repetitive milling machine
- replaceable gang head machine
- replacement machine
- reproducing pattern milling machine
- research-oriented machine
- resistance welding machine
- resonance-balancing machine
- resonant vibration machine
- resurfacing machine
- retapping machine
- reverse torsion fatigue testing machine
- reverse torsion machine
- rewinding machine
- rifling machine
- rigid production machine
- rigid-bed milling machine
- rigid-capable machine
- rise and fall tank machine
- rising blade machine
- rising table broaching machine
- rivet machine
- riveting machine
- robot machine
- robot-assisted machine
- robot-controlled machine
- robot-fed machine
- robotic machine
- robotically-fed machine
- robot-loaded machine
- robot-operated machine
- rock-crushing machine
- rocker-arm spot-welding machine
- rocker-type pickling machine
- Rockwell hardness machine
- Rockwell hardness-testing machine
- roll machine
- roll sheet bending machine
- roll-bending machine
- roll-end milling machine
- roller finishing machine
- roller profiling machine
- roller section-machinestraightening machine
- roller shape-machinestraightening machine
- roller spot-and-seam welding machine
- roller straightening machine
- roller-stretcher machine
- roll-fluting machine
- roll-forging machine
- roll-forming machine
- roll-grinding machine
- rolling dividing machine
- rolling machine
- rolling-and-bending machine
- rolling-on machine
- rolling-quench machine
- roll-over molding machine
- roll-over pattern-draw machine
- roll-seam welding machine
- roll-straightening machine
- roll-threading machine
- roll-turning machine
- rotary assembly machine
- rotary broaching machine
- rotary compression-type machine
- rotary continuous drum-type milling machine
- rotary continuous milling machine
- rotary dial machine
- rotary dial-index machine
- rotary disk filing machine
- rotary drum broaching machine
- rotary drum fixture milling machine
- rotary flame planing machine
- rotary head machine
- rotary indexing drum machine
- rotary indexing machine
- rotary indexing pallet machine
- rotary indexing table machine
- rotary knife cutting machine
- rotary machine
- rotary milling machine with horizontal workholder
- rotary pallet machine
- rotary planetary machine
- rotary planetary-die machine
- rotary stamping machine
- rotary surface grinding machine
- rotary table machine
- rotary tooled machine
- rotary transfer machine
- rotary welding machine
- rotary-drive machine
- rotary-driven machine
- rotary-table broaching machine
- rotary-table index machine
- rotary-table indexing machine
- rotary-table milling machine
- rotary-table surface grinding machine
- rotary-table transfer machine
- rotary-type milling machine
- rotating machine
- rotating-beam fatigue machine
- rotating-beam fatigue testing machine
- rotation machine
- rotor milling machine
- rotor slot milling machine
- rough boring machine
- rough facing machine
- rough grinding machine
- rough milling machine
- rough turning machine
- roughing machine
- round column drilling machine
- rounding machine
- roundness measuring machine
- routing milling machine
- RP machine
- rundown machine
- running balance indicating machine
- S/R machine
- saddle-type machine
- sample preparation machine
- sampling machine
- sandblast cleaning machine
- sandblast machine with stationary nozzle
- sandblast machine
- sandblast sprocket-table machine
- sand-throwing machine
- saw machine
- saw-brazing machine
- saw-cutting machine
- saw-grinding machine
- sawing machine
- saw-setting machine
- saw-sharpening machine
- saw-toothing machine
- scalping machine
- scissors-type horizontal band machine
- scissors-type horizontal machine
- scrap shearing machine
- scraping machine
- scratchbrush machine
- screening machine
- screw machine
- screw thread grinding machine
- screw thread milling machine
- screw thread rolling machine
- screw thread whirling machine
- screw-cutting machine
- screw-driving machine
- screw-head slotting machine
- screwing machine
- screw-nicking machine
- screw-shaving machine
- scribing machine
- scrubbing machine
- scrubbing-and-drying machine
- sculpturing machine
- seam-welding machine
- secondary machine
- second-operation machine
- section bending machine
- section shearing machine
- section-iron bending machine
- section-iron shearing machine
- section-straightening machine
- section-stretching machine
- segmented transfer machine
- self-controlling machine
- self-correcting machine
- semiautomatic arc welding machine
- semiautomatic gas-cutting machine
- semiautomatic grinding machine
- semiautomatic machine
- semiautomatic welding machine
- semiproduction machine
- sensitive drilling machine
- sensitive tapping machine
- separately excited machine
- sequence-controlled machine
- sequential transfer machines
- series-produced machines
- servo indexer machine
- servo slide machine
- sets-of-parts operated machine
- shaft machine
- shape-cutting machine
- shaper machine
- shape-straightening machine
- shaping machine
- sharpening machine
- shaving cutter grinding machine
- shear machine
- shearing machine
- shear-speed machine
- sheet and plate bending machine
- sheet bending machine
- sheet metal bending machine
- sheet metal cutting machine
- sheet metal folding machine
- sheet metal leveling machine
- sheet metal shearing machine
- sheet metal stamping machine
- sheet metal working machine
- sheet straightening and polishing machine
- sheet working machine
- sheet-leveling machine
- sheet-straightening machine
- shell core blowing machine
- shell molding machine
- ship propeller milling machine
- shock-and-vibration machine
- shockless jolting machine
- shopfloor machine
- shopworn machine
- show machine
- shredding machine for wood wool production
- shredding machine
- side hole drilling machine
- side-milling machine
- side-planing machine
- sieving machine
- simple-to-operate automatic machine
- simple-to-operate machine
- simplex milling machine
- simplex multiple-spindle machine
- simulation machine
- simultaneous 5-axis machine
- single wheel lapping machine
- single-address machine
- single-axis machine
- single-blade sawing machine
- single-end boring machine
- single-end centering and end-facing machine
- single-end machine
- single-end tenoning machine
- single-ended boring machine
- single-ended machine
- single-function machine
- single-gantry machine
- single-head machine
- single-hitb machine
- single-operation transfer machine
- single-piece machine
- single-point cutting-off machine
- single-position metal forming machine
- single-purpose machine
- single-shift machine
- single-shifted machine
- single-slide bed-type machine
- single-spindle machine
- single-station machine
- single-task machine
- single-upright machine
- singlex machine
- sinking machine
- six-axis NC machine
- sizing machine
- skin-milling machine
- skiving machine
- slabbing machine
- slab-milling machine
- slant-carriage machine
- slant-slide machine
- slave machine
- slicing machine
- slideway-grinding machine
- sliding bush machine
- sliding head machine
- sliding head milling machine
- sliding head/fixed spindle machine
- sliding headstock bar machine
- sliding headstock machine
- slinger molding machine
- slitting machine
- slot and keyway milling machine
- slot-drilling machine
- slot-milling machine
- slotting machine
- small capacity machine
- small-chuck machine
- small-envelope machine
- small-footprint machine
- small-parts machine
- smooth planing machine
- snagging grinding machine
- soft bearing balancing machine
- software-controlled machine
- software-oriented machine
- soldering machine
- solid bed-type milling machine
- sorting machine
- spar milling machine
- spark erosion machine
- spark machine
- special design machine
- special unit machine
- special way-type machine
- specialist machine
- specialized machine
- special-purpose machine
- specialty machine
- speed reduction machine
- spherical grinding machine
- spindle turning machine
- spinning machine
- spiral drive planing machine
- spline cold rolling machine
- spline shaft grinding machine
- spline shaft hobbing machine
- spline-broaching machine
- spline-grinding machine
- spline-hobbing machine
- spline-milling machine
- splining machine
- spring end grinding machine
- spring forming machine
- spring manufacturing machine
- spring testing machine
- spring-coiling machine
- spring-making machine
- spring-winding machine
- spur-and-helical grinding machine
- square milling machine
- squeeze core-making machine
- squeeze molding machine
- squeezing machine
- squirrel cage balancing machine
- SR machine
- stack-routing machine
- stamping machine
- standalone machine
- standard configuration machine
- standard design machine
- standard machine
- standard-unit-type machine
- static balancing machine
- station-type machine
- storage retrieval machine
- straight line milling machine
- straightening machine
- strength testing machine
- stress-relieving machine
- stress-rupture testing machine
- stretch straightening machine
- strip leveling machine
- stud thread rolling machine
- studding machine
- subspindle turning machine
- subspindle-equipped turning machine
- subspindle-type machine
- super-accurate machine
- supercharged laser cutting machine
- superfinishing machine for centerless plunge-cut
- superfinishing machine for centerless throughfeed
- superfinishing machine
- surface and profile grinding machine
- surface-broaching machine
- surface-grinding machine with long table
- surface-grinding machine with two columns
- surface-grinding machine
- surface-milling machine
- surface-treatment machine
- swage machine
- swaging machine
- swing frame grinding machine
- Swiss bar machine
- Swiss screw machine
- Swiss sliding headstock machine
- Swiss-style sliding-headstock machine
- Swiss-style sliding-headstock-type machine
- Swiss-type cam automatic screw machine
- Swiss-type machine
- Swiss-type movable headstock automatic screw machine
- Swiss-type stationary headstock automatic screw machine
- swivel head milling machine
- swivel head slotting machine
- synchronous transfer machine
- synchronous-feed machine
- system machine
- system-ready machine
- systems-compatible machine
- tabletop machine
- table-type machine
- table-uo broaching machine
- tabulating machine
- tailored machine
- tandem table machine
- tap flute milling machine
- tap fluting machine
- tap-drill machine
- tape finishing machine
- tape machine
- tape preparation machine
- tape-controlled machine
- tape-handling machine
- taper strip milling machine
- tap-grinding machine
- tapping machine
- tap-sharpening machine
- targeted machine
- teaching machine
- TEM machine
- template-controlled machine
- tenoning machine
- tensile strength testing machine
- tensile testing machine
- tension testing machine
- test machine
- test sieving machine
- testing machine
- texturing machine
- thermal cutting machine
- thermal deburrting machine
- thermally symmetric machine
- thermally symmetrical machine
- thermoelectric machine
- thread chaser grinding machine
- thread-cutting machine
- threaded wheel grinding machine
- thread-generating machine
- thread-grinding machine
- threading machine
- thread-milling machine
- thread-producing machine
- thread-rolling machine with roller and segmented die
- thread-rolling machine
- thread-tapping machine
- thread-turning machine
- thread-whirling machine
- three-axis checking machine
- three-axis digital read-out inspection machine
- three-axis NC machine
- three-axis-controlled machine
- three-dimensional forming machine
- three-dimensional NC machine
- three-dimensional profiling machine
- three-roll bending machine
- three-roll forming machine
- three-roll sheet bending machine
- three-shift machine
- three-shifted machine
- three-way machine
- tiering machine
- tilt frame machine
- tilting body slotting machine
- tilting column machine
- tilting spindle grinding machine
- tilting spindle machine
- time-tested machine
- TL machine
- TNC-milling machine
- tool and diemaker's milling machine
- tool changer machine
- tool presetting and inspection machine
- tool presetting machine
- tool-and-cutter grinding machine
- tool-grinding machine
- toolroom machine
- toolroom-milling machine
- tool-setting machine
- tooth generating machine
- tooth rounding-and-chamfering machine
- top-of-the-line machine
- torsion testing machine
- totally automated machine
- totally enclosed machine
- touch-trigger machine
- T-planer type machine
- tracer controlled machine
- tracer milling machine
- tracer-controlled electrical discharge profiling machine
- tracer-controlled milling machine
- tracer-guided machine
- tracer-guided milling machine
- tracing machine
- transfer-line-ready machine
- transfer-segmented machine
- transfer-type machine
- transport machine
- transverse planing machine
- traveling bar-type boring machine
- traveling bridge-type plano-milling machine
- traveling column machine
- traveling column-type machine
- traveling gantry machine
- traveling head shaping machine
- traveling portal milling machine
- traveling table machine
- traveling table-type machine
- traveling wire electrical discharge machine
- traveling-head boring machine
- traveling-head surface grinding machine
- traverse grinding machine
- traversing head shaping machine
- trimming machine
- trip dog-controlled machine
- triplex milling machine
- trunnion machine
- trunnion-style machine
- trunnion-type machine
- T-slot milling machine
- tube cutoff machine
- tube grinding-and-polishing machine
- tube-bending machine
- tube-boring machine
- tube-chamfering machine
- tube-drawing machine
- tube-enlarging machine
- tube-forming machine
- tube-sawing machine
- tube-straightening machine
- tube-welding machine
- tumbling machine
- turbine shot-blasting machine
- turbine slot milling machine
- turn/mill machine
- turn, bore and cut-off machine
- turn-broaching machine
- turning machine
- turning, milling and boring machine
- turning-and-boring machine
- turn-mill machine
- turn-peeling machine
- turret hole punching machine
- turret machine
- turret press machine
- turret ram milling machine
- turret screw machine
- turret-chucking machine
- turret-drilling machine
- turret-milling machine
- turret-punching machine
- turret-type drilling machine
- twin pallet machine
- twin screw knee-type machine
- twin six-station turret machine
- twin-head machine
- twin-head shaping machine
- twin-opposed spindle turning machine
- twin-overarm milling machine
- twin-spindle machine
- twin-turret machine
- twist drill flute grinding machine
- twist drill fluting machine
- twist drill grinding machine
- twist drill milling machine
- twist drill point grinding machine
- twist test machine
- two-address machine
- two-axis NC machine
- two-axis-controlled machine
- two-dimensional engraving machine
- two-plane balancing machine
- two-roll sheet bending machine
- two-shift machine
- two-shifted machine
- two-tool machine
- two-way broaching machine
- two-way drilling machine
- two-way machine
- tybe-reducing machine
- typical machine
- ultra precision machine
- ultra-high precision machine
- ultra-high speed machine
- ultrasonic cleaning and degreasing machine
- ultrasonic cleaning machine
- ultrasonic copy-piercing machine
- ultrasonic drilling machine
- ultrasonic hole-contouring machine
- undedicated machine
- underdesigned machine
- underutilized machine
- unit construction machine
- unit-built machine
- unit-changeable machine
- unit-type machine
- universal boring machine
- universal cutter and tool grinding machine
- universal head milling machine
- universal horizontal milling machine
- universal knee-type milling machine
- universal milling machine
- universal rotaty table grinding machine
- universal table grinding machine
- universal testing machine
- universal tool and die milling machine
- universal tool milling and boring machine
- universal toolroom milling machine
- universal-spindle machine
- unmanned machine
- unmanned measuring machine
- unmanned turning machine
- upgradable machine
- uprated machine
- upright boring machine
- upright drilling machine
- upright drilling-and-boring machine
- upsetting machine
- used machine
- user-friendly machine
- utrasonic lapping machine
- valve seat lapping machine
- valve seat milling machine
- vehicle-mounted machine
- vending machine
- veneer slicing machine
- versatile machine
- vertical arm measuring machine
- vertical band machine
- vertical band-saw machine
- vertical band-sawing machine
- vertical bed machine
- vertical boring machine
- vertical broaching machine
- vertical chucking machine
- vertical double-ram broaching machine
- vertical double-slide broaching machine
- vertical drilling machine
- vertical machine
- vertical milling machine
- vertical planing machine
- vertical plano-milling machine
- vertical pull-up broaching machine
- vertical push-broaching machine
- vertical ram machine
- vertical slotting machine
- vertical spindle surface-grinding machine
- vertical turning machine
- vertical turning-and-boring machine
- vertical/horizontal machine
- vertically oriented drilling machine
- vertical-type machine
- vibration fatigue testing machine
- vibration machine
- vibratory finishing machine
- vibrofinishing machine
- Vickers hardness machine
- Vickers pyramid hardness machine
- vision-controlled machine
- volume production machine
- walking machine
- wall machine
- washing drying machine
- washing machine
- watch-case making machine
- watch-gear hobbing machine
- watch-gear making machine
- water jet cutting machine
- water-jet machine
- way-type machine
- way-type unit head machine
- weathering machine
- weighing machine
- welding machine
- well-developed machine
- wet-cutting machine
- wet-grinding machine
- wheel turning machine
- whirling machine
- wide belt sending machine
- wire bonding machine
- wire brush deburring machine
- wire coiling and winding machine
- wire cutting-off machine
- wire drawing machine
- wire EDM machine
- wire erosion machine
- wire netting and weaving machine
- wire-cut EDM machine
- wire-cut electrical discharge machine
- wire-cut machine
- wire-cutting machine
- wire-cutting spark erosion machine
- wire-eroding machine
- wire-forming machine
- wire-making machine
- wire-polishing machine
- wire-straightening machine
- woodsawing machine
- woodworking machine
- workpiece moving-type machine
- worm grinding machine
- worm milling machine
- wrist-pin boring machine
- xerox machine
- X-ray machineEnglish-Russian dictionary of mechanical engineering and automation > machine
-
12 Artificial Intelligence
In my opinion, none of [these programs] does even remote justice to the complexity of human mental processes. Unlike men, "artificially intelligent" programs tend to be single minded, undistractable, and unemotional. (Neisser, 1967, p. 9)Future progress in [artificial intelligence] will depend on the development of both practical and theoretical knowledge.... As regards theoretical knowledge, some have sought a unified theory of artificial intelligence. My view is that artificial intelligence is (or soon will be) an engineering discipline since its primary goal is to build things. (Nilsson, 1971, pp. vii-viii)Most workers in AI [artificial intelligence] research and in related fields confess to a pronounced feeling of disappointment in what has been achieved in the last 25 years. Workers entered the field around 1950, and even around 1960, with high hopes that are very far from being realized in 1972. In no part of the field have the discoveries made so far produced the major impact that was then promised.... In the meantime, claims and predictions regarding the potential results of AI research had been publicized which went even farther than the expectations of the majority of workers in the field, whose embarrassments have been added to by the lamentable failure of such inflated predictions....When able and respected scientists write in letters to the present author that AI, the major goal of computing science, represents "another step in the general process of evolution"; that possibilities in the 1980s include an all-purpose intelligence on a human-scale knowledge base; that awe-inspiring possibilities suggest themselves based on machine intelligence exceeding human intelligence by the year 2000 [one has the right to be skeptical]. (Lighthill, 1972, p. 17)4) Just as Astronomy Succeeded Astrology, the Discovery of Intellectual Processes in Machines Should Lead to a Science, EventuallyJust as astronomy succeeded astrology, following Kepler's discovery of planetary regularities, the discoveries of these many principles in empirical explorations on intellectual processes in machines should lead to a science, eventually. (Minsky & Papert, 1973, p. 11)5) Problems in Machine Intelligence Arise Because Things Obvious to Any Person Are Not Represented in the ProgramMany problems arise in experiments on machine intelligence because things obvious to any person are not represented in any program. One can pull with a string, but one cannot push with one.... Simple facts like these caused serious problems when Charniak attempted to extend Bobrow's "Student" program to more realistic applications, and they have not been faced up to until now. (Minsky & Papert, 1973, p. 77)What do we mean by [a symbolic] "description"? We do not mean to suggest that our descriptions must be made of strings of ordinary language words (although they might be). The simplest kind of description is a structure in which some features of a situation are represented by single ("primitive") symbols, and relations between those features are represented by other symbols-or by other features of the way the description is put together. (Minsky & Papert, 1973, p. 11)[AI is] the use of computer programs and programming techniques to cast light on the principles of intelligence in general and human thought in particular. (Boden, 1977, p. 5)The word you look for and hardly ever see in the early AI literature is the word knowledge. They didn't believe you have to know anything, you could always rework it all.... In fact 1967 is the turning point in my mind when there was enough feeling that the old ideas of general principles had to go.... I came up with an argument for what I called the primacy of expertise, and at the time I called the other guys the generalists. (Moses, quoted in McCorduck, 1979, pp. 228-229)9) Artificial Intelligence Is Psychology in a Particularly Pure and Abstract FormThe basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense. We can now see why this includes psychology and artificial intelligence on a more or less equal footing: people and intelligent computers (if and when there are any) turn out to be merely different manifestations of the same underlying phenomenon. Moreover, with universal hardware, any semantic engine can in principle be formally imitated by a computer if only the right program can be found. And that will guarantee semantic imitation as well, since (given the appropriate formal behavior) the semantics is "taking care of itself" anyway. Thus we also see why, from this perspective, artificial intelligence can be regarded as psychology in a particularly pure and abstract form. The same fundamental structures are under investigation, but in AI, all the relevant parameters are under direct experimental control (in the programming), without any messy physiology or ethics to get in the way. (Haugeland, 1981b, p. 31)There are many different kinds of reasoning one might imagine:Formal reasoning involves the syntactic manipulation of data structures to deduce new ones following prespecified rules of inference. Mathematical logic is the archetypical formal representation. Procedural reasoning uses simulation to answer questions and solve problems. When we use a program to answer What is the sum of 3 and 4? it uses, or "runs," a procedural model of arithmetic. Reasoning by analogy seems to be a very natural mode of thought for humans but, so far, difficult to accomplish in AI programs. The idea is that when you ask the question Can robins fly? the system might reason that "robins are like sparrows, and I know that sparrows can fly, so robins probably can fly."Generalization and abstraction are also natural reasoning process for humans that are difficult to pin down well enough to implement in a program. If one knows that Robins have wings, that Sparrows have wings, and that Blue jays have wings, eventually one will believe that All birds have wings. This capability may be at the core of most human learning, but it has not yet become a useful technique in AI.... Meta- level reasoning is demonstrated by the way one answers the question What is Paul Newman's telephone number? You might reason that "if I knew Paul Newman's number, I would know that I knew it, because it is a notable fact." This involves using "knowledge about what you know," in particular, about the extent of your knowledge and about the importance of certain facts. Recent research in psychology and AI indicates that meta-level reasoning may play a central role in human cognitive processing. (Barr & Feigenbaum, 1981, pp. 146-147)Suffice it to say that programs already exist that can do things-or, at the very least, appear to be beginning to do things-which ill-informed critics have asserted a priori to be impossible. Examples include: perceiving in a holistic as opposed to an atomistic way; using language creatively; translating sensibly from one language to another by way of a language-neutral semantic representation; planning acts in a broad and sketchy fashion, the details being decided only in execution; distinguishing between different species of emotional reaction according to the psychological context of the subject. (Boden, 1981, p. 33)Can the synthesis of Man and Machine ever be stable, or will the purely organic component become such a hindrance that it has to be discarded? If this eventually happens-and I have... good reasons for thinking that it must-we have nothing to regret and certainly nothing to fear. (Clarke, 1984, p. 243)The thesis of GOFAI... is not that the processes underlying intelligence can be described symbolically... but that they are symbolic. (Haugeland, 1985, p. 113)14) Artificial Intelligence Provides a Useful Approach to Psychological and Psychiatric Theory FormationIt is all very well formulating psychological and psychiatric theories verbally but, when using natural language (even technical jargon), it is difficult to recognise when a theory is complete; oversights are all too easily made, gaps too readily left. This is a point which is generally recognised to be true and it is for precisely this reason that the behavioural sciences attempt to follow the natural sciences in using "classical" mathematics as a more rigorous descriptive language. However, it is an unfortunate fact that, with a few notable exceptions, there has been a marked lack of success in this application. It is my belief that a different approach-a different mathematics-is needed, and that AI provides just this approach. (Hand, quoted in Hand, 1985, pp. 6-7)We might distinguish among four kinds of AI.Research of this kind involves building and programming computers to perform tasks which, to paraphrase Marvin Minsky, would require intelligence if they were done by us. Researchers in nonpsychological AI make no claims whatsoever about the psychological realism of their programs or the devices they build, that is, about whether or not computers perform tasks as humans do.Research here is guided by the view that the computer is a useful tool in the study of mind. In particular, we can write computer programs or build devices that simulate alleged psychological processes in humans and then test our predictions about how the alleged processes work. We can weave these programs and devices together with other programs and devices that simulate different alleged mental processes and thereby test the degree to which the AI system as a whole simulates human mentality. According to weak psychological AI, working with computer models is a way of refining and testing hypotheses about processes that are allegedly realized in human minds.... According to this view, our minds are computers and therefore can be duplicated by other computers. Sherry Turkle writes that the "real ambition is of mythic proportions, making a general purpose intelligence, a mind." (Turkle, 1984, p. 240) The authors of a major text announce that "the ultimate goal of AI research is to build a person or, more humbly, an animal." (Charniak & McDermott, 1985, p. 7)Research in this field, like strong psychological AI, takes seriously the functionalist view that mentality can be realized in many different types of physical devices. Suprapsychological AI, however, accuses strong psychological AI of being chauvinisticof being only interested in human intelligence! Suprapsychological AI claims to be interested in all the conceivable ways intelligence can be realized. (Flanagan, 1991, pp. 241-242)16) Determination of Relevance of Rules in Particular ContextsEven if the [rules] were stored in a context-free form the computer still couldn't use them. To do that the computer requires rules enabling it to draw on just those [ rules] which are relevant in each particular context. Determination of relevance will have to be based on further facts and rules, but the question will again arise as to which facts and rules are relevant for making each particular determination. One could always invoke further facts and rules to answer this question, but of course these must be only the relevant ones. And so it goes. It seems that AI workers will never be able to get started here unless they can settle the problem of relevance beforehand by cataloguing types of context and listing just those facts which are relevant in each. (Dreyfus & Dreyfus, 1986, p. 80)Perhaps the single most important idea to artificial intelligence is that there is no fundamental difference between form and content, that meaning can be captured in a set of symbols such as a semantic net. (G. Johnson, 1986, p. 250)Artificial intelligence is based on the assumption that the mind can be described as some kind of formal system manipulating symbols that stand for things in the world. Thus it doesn't matter what the brain is made of, or what it uses for tokens in the great game of thinking. Using an equivalent set of tokens and rules, we can do thinking with a digital computer, just as we can play chess using cups, salt and pepper shakers, knives, forks, and spoons. Using the right software, one system (the mind) can be mapped into the other (the computer). (G. Johnson, 1986, p. 250)19) A Statement of the Primary and Secondary Purposes of Artificial IntelligenceThe primary goal of Artificial Intelligence is to make machines smarter.The secondary goals of Artificial Intelligence are to understand what intelligence is (the Nobel laureate purpose) and to make machines more useful (the entrepreneurial purpose). (Winston, 1987, p. 1)The theoretical ideas of older branches of engineering are captured in the language of mathematics. We contend that mathematical logic provides the basis for theory in AI. Although many computer scientists already count logic as fundamental to computer science in general, we put forward an even stronger form of the logic-is-important argument....AI deals mainly with the problem of representing and using declarative (as opposed to procedural) knowledge. Declarative knowledge is the kind that is expressed as sentences, and AI needs a language in which to state these sentences. Because the languages in which this knowledge usually is originally captured (natural languages such as English) are not suitable for computer representations, some other language with the appropriate properties must be used. It turns out, we think, that the appropriate properties include at least those that have been uppermost in the minds of logicians in their development of logical languages such as the predicate calculus. Thus, we think that any language for expressing knowledge in AI systems must be at least as expressive as the first-order predicate calculus. (Genesereth & Nilsson, 1987, p. viii)21) Perceptual Structures Can Be Represented as Lists of Elementary PropositionsIn artificial intelligence studies, perceptual structures are represented as assemblages of description lists, the elementary components of which are propositions asserting that certain relations hold among elements. (Chase & Simon, 1988, p. 490)Artificial intelligence (AI) is sometimes defined as the study of how to build and/or program computers to enable them to do the sorts of things that minds can do. Some of these things are commonly regarded as requiring intelligence: offering a medical diagnosis and/or prescription, giving legal or scientific advice, proving theorems in logic or mathematics. Others are not, because they can be done by all normal adults irrespective of educational background (and sometimes by non-human animals too), and typically involve no conscious control: seeing things in sunlight and shadows, finding a path through cluttered terrain, fitting pegs into holes, speaking one's own native tongue, and using one's common sense. Because it covers AI research dealing with both these classes of mental capacity, this definition is preferable to one describing AI as making computers do "things that would require intelligence if done by people." However, it presupposes that computers could do what minds can do, that they might really diagnose, advise, infer, and understand. One could avoid this problematic assumption (and also side-step questions about whether computers do things in the same way as we do) by defining AI instead as "the development of computers whose observable performance has features which in humans we would attribute to mental processes." This bland characterization would be acceptable to some AI workers, especially amongst those focusing on the production of technological tools for commercial purposes. But many others would favour a more controversial definition, seeing AI as the science of intelligence in general-or, more accurately, as the intellectual core of cognitive science. As such, its goal is to provide a systematic theory that can explain (and perhaps enable us to replicate) both the general categories of intentionality and the diverse psychological capacities grounded in them. (Boden, 1990b, pp. 1-2)Because the ability to store data somewhat corresponds to what we call memory in human beings, and because the ability to follow logical procedures somewhat corresponds to what we call reasoning in human beings, many members of the cult have concluded that what computers do somewhat corresponds to what we call thinking. It is no great difficulty to persuade the general public of that conclusion since computers process data very fast in small spaces well below the level of visibility; they do not look like other machines when they are at work. They seem to be running along as smoothly and silently as the brain does when it remembers and reasons and thinks. On the other hand, those who design and build computers know exactly how the machines are working down in the hidden depths of their semiconductors. Computers can be taken apart, scrutinized, and put back together. Their activities can be tracked, analyzed, measured, and thus clearly understood-which is far from possible with the brain. This gives rise to the tempting assumption on the part of the builders and designers that computers can tell us something about brains, indeed, that the computer can serve as a model of the mind, which then comes to be seen as some manner of information processing machine, and possibly not as good at the job as the machine. (Roszak, 1994, pp. xiv-xv)The inner workings of the human mind are far more intricate than the most complicated systems of modern technology. Researchers in the field of artificial intelligence have been attempting to develop programs that will enable computers to display intelligent behavior. Although this field has been an active one for more than thirty-five years and has had many notable successes, AI researchers still do not know how to create a program that matches human intelligence. No existing program can recall facts, solve problems, reason, learn, and process language with human facility. This lack of success has occurred not because computers are inferior to human brains but rather because we do not yet know in sufficient detail how intelligence is organized in the brain. (Anderson, 1995, p. 2)Historical dictionary of quotations in cognitive science > Artificial Intelligence
-
13 system
1) система || системный3) вчт операционная система; программа-супервизор5) вчт большая программа6) метод; способ; алгоритм•system halted — "система остановлена" ( экранное сообщение об остановке компьютера при наличии серьёзной ошибки)
- CPsystem- H-system- h-system- hydrogen-air/lead battery hybrid system- Ksystem- Lsystem- L*a*b* system- master/slave computer system- p-system- y-system- Δ-system -
14 such
A pron1 ( this) such is life c'est la vie ; she's a good singer and recognized as such c'est une bonne chanteuse et elle est reconnue comme telle ; she's talented and recognized as such elle a du talent et son talent est reconnu ; ⇒ as ;2 = suchlike.B det1 ( of kind previously mentioned) ( replicated) tel/telle ; ( similar) pareil/-eille ; ( of similar sort) de ce type (after n) ; such a situation une telle situation ; such individuals de tels individus ; in such a situation dans une situation pareille ; at such a time dans un moment pareil ; many such proposals de nombreuses propositions de ce type ; and other such arguments et autres arguments de ce type ; all such basic foods tous les aliments de base de ce type ; potatoes, bread and all such basic foods les pommes de terre, le pain et tous les autres aliments de base ; doctors, dentists and all such people les docteurs, les dentistes et toutes les personnes qui exercent ce type de métier ; a mouse or some such animal une souris ou un animal semblable ; he said ‘so what!’ or some such remark il a dit ‘et alors!’ ou quelque chose comme ça ; there was some such case last year il s'est produit la même chose l'année dernière ; there's no such person il/elle n'existe pas ; there was such a man I believe je crois que cet homme a existé ; there's no such thing ça n'existe pas ; I've never heard of such a thing je n'ai jamais entendu parler d'une chose pareille ; I didn't say any such thing je n'ai jamais dit une chose pareille ; you'll do no such thing! il n'en est pas question! ; I 've been waiting for just such an opportunity j'attendais justement que l'occasion se présente ;2 ( of specific kind) to be such that être tel/telle que ; my hours are such that I usually miss the last train mes horaires sont tels que je rate habituellement le dernier train ; his movements were such as to arouse suspicion il se conduisait de telle façon qu'il éveillait les soupçons ; in such a way that d'une telle façon que ;3 ( any possible) such money as I have le peu d'argent or tout l'argent que j'ai ; until such time as jusqu'à ce que (+ subj) ;4 ( so great) tel/telle ; there was such carnage! il y avait un tel carnage! ; to be having such problems avoir de tels problèmes ; such was his admiration/anger that son admiration/sa colère était telle que ; his fear was such that il avait tellement peur que ; to be in such despair/in such a rage être tellement désespéré/dans une telle colère ;5 iron (of such small worth, quantity) you can borrow my boots such as they are ces bottes ne sont pas géniales ○ mais tu peux les emprunter ; we picked up the apples such as there were nous avons ramassé les rares pommes qu'il y avait par terre.C such as det phr, conj phr comme, tel/telle que ; such a house as this, a house such as this une maison comme celle-ci ; it was on just such a night as this that c'est par une nuit exactement comme celle-ci que ; such cities as or cities such as Manchester and Birmingham des villes telles que or comme Manchester et Birmingham ; a person such as her une personne comme elle ; such as? ( as response) gen quoi par exemple? ; ( referring to person) qui par exemple? ; there are no such things as giants les géants n'existent pas ; have you such a thing as a screwdriver? auriez-vous un tournevis par hasard? ; inflation such as occurred last year l'inflation telle qu'elle s'est manifestée l'année dernière.D adv1 ( to a great degree) ( with adjectives) si, tellement ; ( with nouns) tel/telle ; in such a persuasive way d'une façon si convaincante ; such a nice boy! un garçon si gentil!, un si gentil garçon! ; such excellent meals de si bons plats ; such good quality as this une telle qualité ; I hadn't seen such a good film for years je n'avais pas vu un aussi bon film depuis des années ; don't be such an idiot ne sois pas si stupide ; she's not such an idiot as she seems elle n'est pas aussi stupide que l'on croit ; only such an idiot (as him) would do il n'y a qu' un imbécile (comme lui) qui ferait ; it was such (a lot of) fun on s'est tellement amusé ; such a lot of problems tant de problèmes ; (ever ○ ) such a lot of people beaucoup de gens ; thanks ever such a lot ○ merci mille fois. -
15 aircraft
aircraft nвоздушное судноabandon an aircraftпокидать воздушное судноabandoned aircraftвоздушное судно, исключенное из реестраaccident to an aircraftпроисшествие с воздушным судномaccommodate an aircraftразмещать воздушное судноactive aircraftэксплуатируемое воздушное судноafter an aircraftдорабатывать конструкцию воздушного суднаageing aircraftизнос воздушного суднаairborne aircraftвоздушное судно, находящееся в воздухеaircraft acceleration factorкоэффициент перегрузки воздушного суднаaircraft acceleration testsиспытания воздушного судна на перегрузкиaircraft accessory gear boxкоробка приводов самолетных агрегатовaircraft ageсрок службы воздушного суднаaircraft alert positionсостояние готовности воздушного судна к вылетуaircraft alternate-stress testsиспытания воздушного судна на переменные нагрузкиaircraft anticollision deviceприбор предупреждения столкновений воздушных судовaircraft assembly jigсборочный стапель воздушного суднаaircraft axisось симметрии воздушного суднаaircraft balance diagramцентровочный график воздушного суднаaircraft basic specificationsосновные технические данные воздушного суднаaircraft bearingпеленг воздушного суднаaircraft behaviorповедение воздушного суднаaircraft blind transmissionпередача воздушного суднаaircraft braking performanceтормозная характеристика воздушного суднаaircraft breakawayстрагивание воздушного суднаaircraft breakdownвесовая классификация воздушного суднаaircraft call signпозывной код воздушного суднаaircraft capacityвместимость воздушного суднаaircraft capacity rangeпредел коммерческой загрузки воздушного суднаaircraft cargo lashingшвартовка груза на воздушном суднеaircraft categoryвид воздушного суднаaircraft category ratingклассификация воздушных судов по типамaircraft center lineосевая линия воздушного суднаaircraft center - of - gravityцентровка воздушного суднаaircraft certificateсертификат воздушного суднаaircraft certificate holderвладелец сертификата на воздушное судноaircraft classificationклассификация воздушных судовaircraft clockбортовой синхронизаторaircraft commanderкомандир воздушного суднаaircraft commissioning testsэксплуатационные испытания воздушного суднаaircraft communication equipmentбортовое связное оборудованиеaircraft companyфирма по производству воздушных судовaircraft componentэлемент конструкции воздушного суднаaircraft containerконтейнер для перевозки грузов и багажа на воздушном суднеaircraft control lossпотеря управляемости воздушного суднаaircraft control marginзапас управляемости воздушного суднаaircraft control systemсистема управления воздушным судномaircraft control transferпередача управления воздушным судномaircraft cost levelсебестоимость воздушного суднаaircraft courseкурс воздушного суднаaircraft customerзаказчик воздушного суднаaircraft deckпол кабины воздушного суднаaircraft decompressionразгерметизация воздушного суднаaircraft defects listведомость дефектов воздушного суднаaircraft deliveryпоставка воздушных судовaircraft depotавиационная базаaircraft designконструкция воздушного суднаaircraft designerавиаконструкторaircraft design loadрасчетный предел нагрузки воздушного суднаaircraft development plantопытная авиационный заводaircraft dimension toleranceдопуск на размеры воздушного суднаaircraft ditchingвынужденная посадка воздушного судна на водуaircraft documentsбортовая документацияaircraft dry leaseаренда воздушного судна без экипажаaircraft dryleaseаренда воздушного судна без экипажаaircraft earthingзаземление воздушного суднаaircraft electrical failureотказ электросистемы воздушного суднаaircraft electric systemэлектросистема воздушного суднаaircraft electrificationосветительное оборудование воздушного суднаaircraft embodyпроводить доработку воздушного суднаaircraft emergencyаварийная ситуация с воздушным судномaircraft emergency locator beaconбортовой аварийный приводной маякaircraft employmentэксплуатация воздушного суднаaircraft empty weightмасса пустого воздушного суднаaircraft endurance testsресурсные испытания воздушного суднаaircraft environmental testиспытание воздушного судна в термобарокамереaircraft equipmentбортовое оборудованиеaircraft equipment overhaulремонт оборудования воздушного суднаaircraft escape chuteаварийный бортовой трап - лотокaircraft evacuation meansсредства эвакуации воздушного суднаaircraft evolutionэволюция воздушного суднаaircraft factoryавиационный заводaircraft fatigue lifeусталостный ресурс воздушного суднаaircraft fire pointочаг пожара на воздушном суднеaircraft first costсебестоимость производства воздушного суднаaircraft fixместоположение воздушного суднаaircraft fixed equipmentбортовое стационарное оборудованиеaircraft fix latitudeширота местонахождения воздушного суднаaircraft fixtureстапель для сборки воздушного суднаaircraft flashзасветка воздушного суднаaircraft fleetпарк воздушных судовaircraft fleet turnoverоборот парка воздушных судовaircraft flight reportполетный лист воздушного суднаaircraft flyingполеты воздушных судовaircraft freightгруз, перевозимый воздушным судномaircraft fuel consumptionрасход топлива воздушным судномaircraft fuel quantityзапас топлива воздушного суднаaircraft fuel supplyподача топлива в систему воздушного суднаaircraft galleyбортовая кухня воздушного суднаaircraft generationпоколение воздушных судовaircraft geometryконтуры воздушного суднаaircraft handlingуправление воздушным судномaircraft hardwareприборное оборудование воздушного суднаaircraft headingкурс воздушного суднаaircraft heaterаэродромный обогреватель воздушного суднаaircraft heating systemсистема обогрева воздушного суднаaircraft heelкрен воздушного суднаaircraft high tension wiringэлектропроводка высокого напряжения на воздушном суднеaircraft hijack protectionзащита воздушного судна от угонаaircraft hoistсамолетный подъемникaircraft hourсамолето-часaircraft hydraulic jackгидроподъемник для воздушного суднаaircraft icingобледенение воздушного суднаaircraft identificationопознавание воздушного суднаaircraft identification systemсистема опознавания воздушного суднаaircraft impactстолкновение воздушного суднаaircraft impact angleугол удара воздушного суднаaircraft in distressвоздушное судно, терпящее бедствиеaircraft in missingвоздушное судно, пропавшее без вестиaircraft in serviceэксплуатируемое воздушное судноaircraft insuranceстрахование воздушного суднаaircraft integrated data systemбортовая комплексная система регистрации данныхaircraft intentional swerveпреднамеренное отклонение воздушного суднаaircraft interchangeобмен воздушными судамиaircraft is considered to be missingвоздушное судно считается пропавшим без вестиaircraft jacking pointместо установки домкрата для подъема воздушного суднаaircraft ladderбортовая лестницаaircraft ladingзагрузка воздушного суднаaircraft landingпосадка воздушного суднаaircraft landing measurement systemсистема измерения посадочных параметров воздушного суднаaircraft lateral inbalanceнарушение поперечной центровки воздушного суднаaircraft layoutкомпоновка воздушного суднаaircraft leadэлектропроводка воздушного суднаaircraft leafletрекламный проспект воздушного суднаaircraft leaseаренда воздушного суднаaircraft leveling pointнивелировочная точка воздушного суднаaircraft lightsбортовые аэронавигационные огниaircraft limit switchконцевой выключатель в системе воздушного суднаaircraft listкрен воздушного суднаaircraft load distributionраспределение загрузки воздушного суднаaircraft load factorкоэффициент загрузки воздушного суднаaircraft loading chartсхема загрузки воздушного суднаaircraft loading diagramсхема загрузки воздушного суднаaircraft loading instructionинструкция по загрузке воздушного суднаaircraft low tension wiringэлектропроводка низкого напряжения на воздушном суднеaircraft maintenance baseавиационная техническая базаaircraft maintenance depotавиационная техническая базаaircraft maintenance divisionцех технического обслуживания воздушных судовaircraft maintenance engineerинженер по техническому обслуживанию воздушных судовaircraft maintenance engineering exhibitionвыставка технического оборудования для обслуживания воздушных судовaircraft maintenance guideруководство по технической эксплуатации воздушного суднаaircraft maintenance performanceэксплуатационная технологичность воздушного суднаaircraft maintenance practiceтехнология технического обслуживания воздушного суднаaircraft maintenance teamбригада технического обслуживания воздушных судовaircraft main viewобщий вид воздушного суднаaircraft manoeuvrabilityманевренность воздушного суднаaircraft manufacturing facilitiesавиационное производственное предприятиеaircraft manufacturing plantавиационный заводaircraft minimaминимум воздушного суднаaircraft mockupмакет воздушного суднаaircraft modelмодель воздушного суднаaircraft movementдвижение воздушного суднаaircraft mushпросадка воздушного суднаaircraft nationality markгосударственный опознавательный знак воздушного суднаaircraft navigation equipmentбортовое навигационное оборудованиеaircraft noise abatement operating proceduresэксплуатационные методы снижения авиационного шумаaircraft noise annoyanceраздражающее воздействие шума от воздушного судaircraft noise certificateсертификат воздушного судна по шумуaircraft noise pollutionвредное воздействие шума от воздушных судовaircraft noise prediction programпрограмма прогнозирования авиационного шумаaircraft nose sectionносовая часть воздушного суднаaircraft observationнаблюдение с борта воздушного суднаaircraft on flightвоздушное судно в полетеaircraft on registerвоздушное судно, занесенное в реестрaircraft operating agencyлетно-эксплуатационное предприятиеaircraft operating expensesэксплуатационные расходы на воздушное судноaircraft operating instructionинструкция по эксплуатации воздушного суднаaircraft operationэксплуатация воздушного суднаaircraft operational empty weightдопустимая посадочная массаaircraft operational rangeэксплуатационная дальность полета воздушного суднаaircraft operational weightмасса снаряженного воздушного судна без пассажировaircraft overhaulремонт воздушного суднаaircraft overhaul plantремонтный авиационный заводaircraft overhaul shopмастерская капитального ремонта воздушных судовaircraft overswingingраскачивание воздушного суднаaircraft parkingпарковка воздушного суднаaircraft parking equipmentоборудование места стоянки воздушного суднаaircraft parking placeместо стоянки воздушного суднаaircraft passenger insuranceстрахование авиапассажировaircraft perfomance limitationsлетно-технические ограниченияaircraft performance characteristicsлетно-технические характеристикиaircraft performancesлетно-технические характеристики воздушного суднаaircraft phantom viewусловно прозрачный вид воздушного суднаaircraft pivotingразворот воздушного суднаaircraft pneumatic systemпневматическая система воздушного суднаaircraft portable equipmentпереносное бортовое оборудованиеaircraft positionотметка местоположения воздушного суднаaircraft position indicatorуказатель положения воздушного суднаaircraft position lineлиния положения воздушного суднаaircraft position reportсообщение о положении воздушного суднаaircraft power reductionуменьшение мощности двигателей воздушного суднаaircraft power supplyбортовой источник электропитанияaircraft productionпроизводство воздушных судовaircraft production break lineлиния технологического разъема воздушного суднаaircraft production inspectionконтроль качества изготовления воздушных судовaircraft prototypeопытный вариант воздушного суднаaircraft provider stateгосударство - поставщик воздушного суднаaircraft rangeдальность полета воздушного суднаaircraft ratingклассификационная отметка воздушного суднаaircraft readinessготовность воздушного суднаaircraft recorderбортовой регистраторaircraft recorder equipmentбортовая контрольно-записывающая аппаратураaircraft recoveryобнаружение и удаление воздушного суднаaircraft recovery dateдата обнаружения пропавшего воздушного суднаaircraft recovery kitкомплект оборудования для удаления воздушного суднаaircraft recovery planплан восстановления воздушного суднаaircraft reference symbolуказатель положения воздушного судна(на шкале навигационного прибора) aircraft registrationрегистрация воздушного суднаaircraft registration markбортовой регистрационный знак воздушного суднаaircraft registry stateгосударство регистрации воздушного суднаaircraft reliabilityнадежность воздушного суднаaircraft removal from serviceснятие воздушного судна с эксплуатацииaircraft rental costsрасходы на аренду воздушного суднаaircraft repair depotбаза ремонта воздушных судовaircraft repair kitтехническая аптечка воздушного суднаaircraft repairmanспециалист по ремонту воздушных судовaircraft repair shopавиаремонтная мастерскаяaircraft requiring assistanceвоздушное судно, нуждающееся в помощиaircraft reserve factorзапас прочности воздушного суднаaircraft responderсамолетный ответчикaircraft retrofitдоработка воздушного суднаaircraft rollкрен воздушного суднаaircraft safe lifeбезопасный срок службы воздушного суднаaircraft safety beaconпроблесковый маяк для предупреждения столкновенияaircraft safety factorуровень безопасности полетов воздушного суднаaircraft salvageэвакуация воздушного судна с места аварииaircraft sanitary controlсанитарный контроль воздушных судовaircrafts batchсерия воздушных судовaircraft seating densityплотность размещения кресел на воздушном суднеaircraft self routingпрокладка маршрута с помощью бортовых средств навигацииaircraft sensitivityуправляемость воздушного суднаaircraft separation assuranceобеспечение эшелонирования полетов воздушных судовaircraft service periodпродолжительность обслуживания воздушного суднаaircraft service truck'sтранспортные средства для обслуживания воздушного суднаaircraft servicingобслуживание воздушного суднаaircraft servicing equipmentоборудование для обслуживания воздушного суднаaircraft servicing installationстационарная установка для обслуживания воздушного суднаaircraft settingпеленгование воздушного суднаaircraft's fileнабор бортовой документацииaircraft shedангар для воздушного суднаaircraft sideборт воздушного суднаaircrafts impingementстолкновение воздушных судовaircraft simulatorтренажер воздушного суднаaircraft skidding dragсопротивление скольжению воздушного суднаaircraft's loading positionместо загрузки воздушного суднаaircraft sound proofingзвукоизоляция воздушного суднаaircraft spacingэшелонирование полетов воздушных судовaircraft spare partзапасные части для воздушного суднаaircraft's parking positionместо стоянки воздушного суднаaircraft speedскорость воздушного суднаaircraft spiral glideпланирование воздушного судна по спиралиaircraft's present positionфактическое положение воздушного суднаaircraft standместо остановки воздушного суднаaircraft standby facilitiesрезервное оборудование воздушного суднаaircraft stand identificationобозначение места остановки воздушного суднаaircraft stand identification signопознавательный знак места стоянки воздушного суднаaircraft stand lead-in lineлиния заруливания воздушного судна на стоянкуaircraft stand markingмаркировка места стоянки воздушного суднаaircraft stand taxilaneлиния руления воздушного судна в зоне стоянкиaircraft status reportдонесение о состоянии парка воздушных судовaircraft step unitбортовой трапaircraft stopостановка воздушного суднаaircraft stopping performanceтормозная характеристика воздушного суднаaircraft storage batteryбортовая аккумуляторная батареяaircraft storage instructionинструкция по консервации и хранению воздушного суднаaircraft structural deformationдеформация конструкции воздушного суднаaircraft structureконструкция воздушного суднаaircraft substantial damageзначительное повреждение суднаaircraft sudden swerveвнезапное отклонение воздушного суднаaircraft supersedeasсписание воздушного суднаaircraft supplierпредприятие - поставщик воздушных судовaircraft surface movement indicatorиндикатор наземного движения воздушных судовaircraft systemбортовая системаaircraft technicianавиационный техникaircraft test dataданные о результатах испытаний воздушного суднаaircraft test stationиспытательная станция воздушных судовaircraft tie-down pointточка швартовки воздушного суднаaircraft tightnessгерметичность воздушного суднаaircraft tool codingмаркировка бортового инструментаaircraft towing pointбуксировочный узел воздушного суднаaircraft trailспутный след воздушного суднаaircraft trimбалансировка воздушного суднаaircraft typeтип воздушного суднаaircraft uncontrollabilityнеуправляемость воздушного суднаaircraft underloadingнеполная загрузка воздушного суднаaircraft unlawful seizureнезаконный захват воздушного суднаaircraft usability factorкоэффициент использования воздушного суднаaircraft useful loadполезная нагрузка воздушного суднаaircraft user stateгосударство - эксплуатант воздушного суднаaircraft ventilation rateстепень вентиляции кабины воздушного суднаaircraft wakeспутная струя за воздушным судномaircraft warning systemсистема предупредительной сигнализации воздушного суднаaircraft warrantyгарантийный срок воздушного суднаaircraft washing plantмоечная установка для воздушных судовaircraft wearout rateстепень износа воздушного суднаaircraft weight categoryвесовая категория воздушного суднаaircraft weight toleranceдопуск на массу воздушного суднаaircraft wet leaseаренда воздушного судна вместе с экипажемaircraft wreckполомка воздушного суднаairodynamically balanced aircraftаэродинамически сбалансированное воздушное судноalign the aircraftустанавливать воздушное судноalign the aircraft with the center lineустанавливать воздушное судно по осиalign the aircraft with the runwayустанавливать воздушное судно по оси ВППall-cargo aircraftгрузовое воздушное судноall-metal aircraftцельнометаллическое воздушное судноall-purpose aircraftмногоцелевое воздушное судноall-weather aircraftвсепогодное воздушное судноall-wing aircraftвоздушное судно схемы летающее крылоambulance aircraftсанитарное воздушное судноamphibian aircraftсамолет - амфибияapproaching aircraftвоздушное судно, совершающее заход на посадкуarriving aircraftприбывающее воздушное судноassociated aircraft systemвспомогательная бортовая система воздушного суднаauthorized aircraftвоздушное судно, имеющее разрешение на полетbalanced aircraftсбалансированное воздушное судноbalance the aircraftбалансировать воздушное судноbaseline aircraftслужебное воздушное судноbaseline aircraft configurationконфигурация базовой модели воздушного суднаbasic aircraftосновной вариант воздушного суднаboard an aircraftподниматься на борт воздушного суднаbring the aircraft backвозвращать воздушное судноbring the aircraft outвыводить воздушное судно из кренаbusiness aircraftслужебное воздушное судноcanard aircraftвоздушное судно схемы уткаcargo aircraftгрузовое служебное судноcause of aircraft troubleпричина неисправности воздушного суднаcharter an aircraftфрахтовать воздушное судноchartered aircraftзафрахтованное воздушное судноcivil aircraftвоздушное судно гражданской авиацииclean aircraftвоздушное судно с убранной механизацией крылаclean the aircraftубирать механизацию крыла воздушного суднаclearance of the aircraftразрешение воздушному суднуcleared aircraftвоздушное судно, получившее разрешениеclear the aircraftдавать разрешение воздушному суднуcombination aircraftвоздушное судно для смешанных перевозокCommittee on Aircraft NoiseКомитет по авиационному шумуcommuter-size aircraftвоздушное судно местных воздушных линийcomplex type of aircraftкомбинированный тип воздушного суднаconsider an aircraft serviceableдопускать воздушное судно к дальнейшей эксплуатацииcontrol the aircraftуправлять воздушным судномconventional takeoff and landing aircraftвоздушное судно обычной схемы взлета и посадкиconvert an aircraftпереоборудовать воздушное судноconvertible aircraftгрузопассажирское воздушное судноcover an aircraft withзачехлять воздушное судноdamage aircraft structureповреждать конструкцию воздушного суднаdamaged aircraftповрежденное воздушное судноdecelerate the aircraft toснижать скорость воздушного судна доdelta-wing aircraftвоздушное судно с треугольным крыломdeparting aircraftвылетающее воздушное судноderived aircraftмодифицированное воздушное судноdisabled aircraftвоздушное судно, выведенное из строяdouble-decker aircraftдвухпалубное воздушное судноease the aircraft onвыравнивать воздушное судноeastbound aircraftвоздушное судно, летящее курсом на востокeffect on an aircraftвлиять на состояние воздушного суднаenable the aircraft toдавать воздушному судну правоendanger the aircraftсоздавать опасность для воздушного суднаengage in aircraft operationэксплуатировать воздушное судноenter the aircraftзаносить воздушное судно в реестрenter the aircraft standзаруливать на место стоянки воздушного суднаentire aircraftукомплектованное воздушное судноenvironmentally attuned aircraftвоздушное судно, удовлетворяющее требованиям сохранения окружающей средыequip an aircraft withоборудовать воздушное судноestimated position of aircraftрасчетное положение воздушного суднаexecutive aircraftадминистративное воздушное судноexperimental aircraftопытный вариант воздушного суднаfeeder aircraftвоздушное судно вспомогательной авиалинииfill an aircraft withразмещать в воздушном суднеfirst-generation aircraftвоздушное судно первого поколенияfit an aircraft withоборудовать воздушное судноfixed-wing aircraftвоздушное судно с неподвижным крыломfly by an aircraftлетать на воздушном суднеfly the aircraft1. пилотировать воздушное судно2. управлять самолетом folding wing aircraftвоздушное судно со складывающимся крыломfollowing aircraftвоздушное судно, идущее следомfollow up the aircraftсопровождать воздушное судноforest patrol aircraftвоздушное судно для патрулирования лесных массивовfreight aircraftгрузовое воздушное судноfull-scalle aircraftполномасштабная модель воздушного суднаgeneral-purpose aircraftвоздушное судно общего назначенияhandy aircraftлегкоуправляемое воздушное судноhead the aircraft into windнаправлять воздушное судно против ветраheavier-than-air aircraftлетательный аппарат тяжелее воздухаheavy aircraftтранспортное воздушное судноhigh-altitude aircraftвоздушное судно для полетов на большой высотеhigh-capacity aircraftвоздушное судно большой вместимостиhigh-speed aircraftскоростное воздушное судноhigh-wing aircraftвоздушное судно с верхним расположением крылаholding aircraftвоздушное судно в зоне ожиданияhold the aircraft on the headingвыдерживать воздушное судно на заданном курсеhospital aircraftсанитарное воздушное судноhouse an aircraftразмещать воздушное судноhypersonic aircraftгиперзвуковое воздушное судноidentify the aircraftопознавать воздушное судноimproperly loaded aircraftвоздушное судно, загруженное не по установленной схемеinbound aircraftприбывающее воздушное судноin-coming aircraftвоздушное судно на подходеinconventional type of aircraftнестандартный тип воздушного суднаin-flight aircraftвоздушное судно в полетеinherent in the aircraftсвойственный воздушному суднуin-service aircraftэксплуатируемое воздушное судноinstall in the aircraftустанавливать на борту воздушного суднаinstall on the aircraftмонтировать на воздушном суднеinterception of civil aircraftперехват гражданского воздушного суднаinterchanged aircraftвоздушное судно по обменуintercharged aircraft agreementсоглашение об обмене воздушными суднамиinternational aircraft standardмеждународный авиационный стандартInternational Council of Aircraft Owner and Pilot AssociationsМеждународный совет ассоциаций владельцев воздушных судов и пилотовintruding aircraftвоздушное судно, создающее опасность столкновенияinward aircraftприбывающее воздушное судноirrepairable aircraftнеремонтопригодное воздушное судноjack an aircraftвывешивать воздушное судно на подъемникахjet aircraftреактивное воздушное судноjoin an aircraftсовершать посадку на борт воздушного суднаkeep clear of the aircraftдержаться на безопасном расстоянии от воздушного суднаkeep the aircraft onвыдерживать воздушное судноknown aircraft damageустановленное повреждение воздушного суднаladen aircraftзагруженное воздушное судноland aircraftсухопутное воздушное судноland the aircraftприземлять воздушное судноlead in the aircraftзаруливать воздушное судноlead out the aircraftвыруливать воздушное судноlease an aircraftарендовать воздушное судноleased aircraftарендованное воздушное судноlessee of an aircraftарендатор воздушного суднаlevel the aircraft outвыравнивать воздушное судноlicensed aircraftлицензированное воздушное судноlift an aircraft onвывешивать воздушное судноlift-fuselage aircraftвоздушное судно с несущим фюзеляжемlight aircraftвоздушное судно небольшой массыlighter-than-air aircraftлетательный аппарат легче воздухаline up the aircraftвыруливать воздушное судно на исполнительный стартlong-bodied aircraftдлиннофюзеляжный самолетlong-distance aircraftвоздушное судно большой дальности полетовlow annoyance aircraftмалошумное воздушное судноlow-wing aircraftвоздушное судно с низким расположением крылаmail-carrying aircraftпочтовое воздушное судноmaintain the aircraft at readiness toдержать воздушное судно готовымmake the aircraft airborneотрывать воздушное судно от землиmaking way aircraftвоздушное судно в полетеmanned aircraftпилотируемое воздушное судноmid-wing aircraftвоздушное судно со средним расположением крылаmissing aircraftпропавшее воздушное судноmodified aircraftмодифицированное воздушное судноmoor the aircraftшвартовать воздушное судноmulticrew aircraftвоздушное судно с экипажем из нескольких человекmultiengined aircraftвоздушное судно с двумя и более двигателямиmultipurpose aircraftмногоцелевое воздушное судноnarrow-body aircraftвоздушное судно с узким фюзеляжемnonnoise certificate aircraftвоздушное судно, не сертифицированное по шумуnose-in aircraft standместо стоянки воздушного судна носом к аэровокзалуnose-out aircraft standместо стоянки воздушного судна хвостом к аэровокзалуon aircraft center lineпо оси воздушного суднаoncoming aircraftвоздушное судно, находящееся на встречном курсеone-engined aircraftвоздушное судно с одним двигателемoperate an aircraftэксплуатировать воздушное судноoperation of aircraftэксплуатация воздушного суднаoriginating aircraftвылетающее воздушное судноoutbound aircraftвылетающее воздушное судноoutdated aircraftустаревшая модель воздушного суднаout-of-balance aircraftнесбалансированное воздушное судноoutward aircraftвылетающее воздушное судноoverweight aircraftперегруженное воздушное судноowner-operated aircraftвоздушное судно, находящееся в эксплуатации владельцаpark an aircraftпарковать воздушное судноpassenger aircraftпассажирское воздушное судноpatrol aircraftпатрульное воздушное судноpiston-engined aircraftвоздушное судно с поршневым двигателемplace the aircraftустанавливать воздушное судноplot the aircraftзасекать воздушное судноpractice aircraftтренировочное воздушное судноpreceeding aircraftвоздушное судно, идущее впередиpreproduction aircraftопытный вариант воздушного суднаpressurized aircraftгерметизированное воздушное судноproduction aircraftсерийный вариант воздушного суднаprofitable aircraftкоммерческое воздушное судноprop-driven aircraftвинтовое воздушное судноproperly identify the aircraftточно опознавать воздушное судноprototype aircraftопытный вариант воздушного суднаpull the aircraft out ofбрать штурвал на себяpush the aircraft backбуксировать воздушное судно хвостом впередpush the aircraft downснижать высоту полета воздушного суднаput the aircraft into productionзапускать воздушное судно в производствоput the aircraft on the courseвыводить воздушное судно на заданный курсput the aircraft overпереводить воздушное судно в горизонтальный полетquiet aircraftбесшумное воздушное судноreceiver aircraftвоздушное судно, дозаправляемое в полетеreduced takeoff and landing aircraftвоздушное судно укороченного взлета и посадкиreequip an aircraftзаменять оборудование воздушного суднаregister the aircraftрегистрировать воздушное судноregular-body aircraftвоздушное судно с фюзеляжем типовой схемыrelease the aircraftпрекращать контроль воздушного суднаremoval of aircraftудаление воздушного суднаremove the aircraftудалять воздушное судноrescue aircraftпоисково-спасательное воздушное судноresearch aircraftисследовательское воздушное судноrestore an aircraftвосстанавливать воздушное судноretirement of aircraftсписание воздушного суднаreturn an aircraft to flyable statusприводить воздушное судно в состояние летной годностиreturn the aircraft to serviceдопускать воздушное судно к дальнейшей эксплуатацииroll in the aircraftвводить воздушное судно в кренroll on the aircraftвыполнять этап пробега воздушного суднаroll out the aircraftвыводить воздушное судно из кренаrotary-wing aircraftвоздушное судно с несущим винтомrotate the aircraftотрывать переднюю опору шасси воздушного суднаsafe handling of an aircraftбезопасное управление воздушным судномschool aircraftучебное воздушное судноsea aircraftгидровариант воздушного суднаsearch and rescue aircraftпоисково-спасательное воздушное судноseparate the aircraftэшелонировать воздушное судноshort-range aircraftвоздушное судно для местный авиалинийshort takeoff and landing aircraftвоздушное судно короткого взлета и посадкиsingle-engined aircraftвоздушное судно с одним двигателемsingle-pilot aircraftвоздушное судно с одним пилотомsingle-seater aircraftодноместное воздушное судноspace the aircraftопределять зону полета воздушного суднаsports aircraftспортивное воздушное судноstandby aircraftрезервное воздушное судноstate aircraftвоздушное судно государственной принадлежностиstate of aircraft manufactureгосударство - изготовитель воздушного суднаstayed afloat aircraftвоздушное судно, оставшееся на плавуsteer the aircraftуправлять воздушным судномstretched aircraftвоздушное судно с удлиненным фюзеляжемsubsonic aircraftдозвуковое воздушное судноsubstantially dameged aircraftсущественно поврежденное воздушное судноsubstitute the aircraftзаменять воздушное судноsupersonic aircraftсверхзвуковое воздушное судноsuspected aircraft damageпредполагаемое повреждение воздушного суднаtailless aircraftвоздушное судно схемы летающее крылоtaxiing aircraftрулящее воздушное судноterminating aircraftвоздушное судно, прибывающее в конечный аэропортtest aircraftиспытываемое воздушное судноthe aircraft under commandуправляемое воздушное судноtoday's aircraftвоздушное судно, отвечающее современным требованиямtopped-up aircraftснаряженное воздушное судноtraining aircraftучебно-тренировочное воздушное судноtransonic aircraftоколозвуковое воздушное судноtransport aircraftтранспортное воздушное судноtrim the aircraftбалансировать воздушное судноturbine-engined aircraftвоздушное судно с газотурбинными двигателямиturbojet aircraftвоздушное судно с турбореактивными двигателямиturboprop aircraftвоздушное судно с турбовинтовыми двигателямиtwin-engined aircraftвоздушное судно с двумя двигателямиtwin-fuselage aircraftдвухфюзеляжное воздушное судноunder command aircraftуправляемое воздушное судноunder way aircraftвоздушное судно, готовое к полетуunladen aircraftразгруженное воздушное судноunlawfully seized aircraftнезаконно захваченное воздушное судноunpressurized aircraftнегерметизированное воздушное судноunstall the aircraftвыводить воздушное судно из сваливания на крылоunstick the aircraftотрывать воздушное судно от землиvend an aircraftпоставлять воздушное судноvertical takeoff and landing aircraftвоздушное судно вертикального взлета и посадкиwarn the aircraftпредупреждать воздушное судноwide-body aircraftширокофюзеляжное воздушное судноwork on the aircraftвыполнять работу на воздушном судне -
16 Cognitive Science
The basic idea of cognitive science is that intelligent beings are semantic engines-in other words, automatic formal systems with interpretations under which they consistently make sense.... [P]eople and intelligent computers turn out to be merely different manifestations of the same underlying phenomenon. (Haugeland, 1981b, p. 31)2) Experimental Psychology, Theoretical Linguistics, and Computational Simulation of Cognitive Processes Are All Components of Cognitive ScienceI went away from the Symposium with a strong conviction, more intuitive than rational, that human experimental psychology, theoretical linguistics, and computer simulation of cognitive processes were all pieces of a larger whole, and that the future would see progressive elaboration and coordination of their shared concerns.... I have been working toward a cognitive science for about twenty years beginning before I knew what to call it. (G. A. Miller, 1979, p. 9)Cognitive Science studies the nature of cognition in human beings, other animals, and inanimate machines (if such a thing is possible). While computers are helpful within cognitive science, they are not essential to its being. A science of cognition could still be pursued even without these machines.Computer Science studies various kinds of problems and the use of computers to solve them, without concern for the means by which we humans might otherwise resolve them. There could be no computer science if there were no machines of this kind, because they are indispensable to its being. Artificial Intelligence is a special branch of computer science that investigates the extent to which the mental powers of human beings can be captured by means of machines.There could be cognitive science without artificial intelligence but there could be no artificial intelligence without cognitive science. One final caveat: In the case of an emerging new discipline such as cognitive science there is an almost irresistible temptation to identify the discipline itself (as a field of inquiry) with one of the theories that inspired it (such as the computational conception...). This, however, is a mistake. The field of inquiry (or "domain") stands to specific theories as questions stand to possible answers. The computational conception should properly be viewed as a research program in cognitive science, where "research programs" are answers that continue to attract followers. (Fetzer, 1996, pp. xvi-xvii)What is the nature of knowledge and how is this knowledge used? These questions lie at the core of both psychology and artificial intelligence.The psychologist who studies "knowledge systems" wants to know how concepts are structured in the human mind, how such concepts develop, and how they are used in understanding and behavior. The artificial intelligence researcher wants to know how to program a computer so that it can understand and interact with the outside world. The two orientations intersect when the psychologist and the computer scientist agree that the best way to approach the problem of building an intelligent machine is to emulate the human conceptual mechanisms that deal with language.... The name "cognitive science" has been used to refer to this convergence of interests in psychology and artificial intelligence....This working partnership in "cognitive science" does not mean that psychologists and computer scientists are developing a single comprehensive theory in which people are no different from machines. Psychology and artificial intelligence have many points of difference in methods and goals.... We simply want to work on an important area of overlapping interest, namely a theory of knowledge systems. As it turns out, this overlap is substantial. For both people and machines, each in their own way, there is a serious problem in common of making sense out of what they hear, see, or are told about the world. The conceptual apparatus necessary to perform even a partial feat of understanding is formidable and fascinating. (Schank & Abelson, 1977, pp. 1-2)Within the last dozen years a general change in scientific outlook has occurred, consonant with the point of view represented here. One can date the change roughly from 1956: in psychology, by the appearance of Bruner, Goodnow, and Austin's Study of Thinking and George Miller's "The Magical Number Seven"; in linguistics, by Noam Chomsky's "Three Models of Language"; and in computer science, by our own paper on the Logic Theory Machine. (Newell & Simon, 1972, p. 4)Historical dictionary of quotations in cognitive science > Cognitive Science
-
17 Creativity
Put in this bald way, these aims sound utopian. How utopian they areor rather, how imminent their realization-depends on how broadly or narrowly we interpret the term "creative." If we are willing to regard all human complex problem solving as creative, then-as we will point out-successful programs for problem solving mechanisms that simulate human problem solvers already exist, and a number of their general characteristics are known. If we reserve the term "creative" for activities like discovery of the special theory of relativity or the composition of Beethoven's Seventh Symphony, then no example of a creative mechanism exists at the present time. (Simon, 1979, pp. 144-145)Among the questions that can now be given preliminary answers in computational terms are the following: how can ideas from very different sources be spontaneously thought of together? how can two ideas be merged to produce a new structure, which shows the influence of both ancestor ideas without being a mere "cut-and-paste" combination? how can the mind be "primed," so that one will more easily notice serendipitous ideas? why may someone notice-and remember-something fairly uninteresting, if it occurs in an interesting context? how can a brief phrase conjure up an entire melody from memory? and how can we accept two ideas as similar ("love" and "prove" as rhyming, for instance) in respect of a feature not identical in both? The features of connectionist AI models that suggest answers to these questions are their powers of pattern completion, graceful degradation, sensitization, multiple constraint satisfaction, and "best-fit" equilibration.... Here, the important point is that the unconscious, "insightful," associative aspects of creativity can be explained-in outline, at least-by AI methods. (Boden, 1996, p. 273)There thus appears to be an underlying similarity in the process involved in creative innovation and social independence, with common traits and postures required for expression of both behaviors. The difference is one of product-literary, musical, artistic, theoretical products on the one hand, opinions on the other-rather than one of process. In both instances the individual must believe that his perceptions are meaningful and valid and be willing to rely upon his own interpretations. He must trust himself sufficiently that even when persons express opinions counter to his own he can proceed on the basis of his own perceptions and convictions. (Coopersmith, 1967, p. 58)he average level of ego strength and emotional stability is noticeably higher among creative geniuses than among the general population, though it is possibly lower than among men of comparable intelligence and education who go into administrative and similar positions. High anxiety and excitability appear common (e.g. Priestley, Darwin, Kepler) but full-blown neurosis is quite rare. (Cattell & Butcher, 1970, p. 315)he insight that is supposed to be required for such work as discovery turns out to be synonymous with the familiar process of recognition; and other terms commonly used in the discussion of creative work-such terms as "judgment," "creativity," or even "genius"-appear to be wholly dispensable or to be definable, as insight is, in terms of mundane and well-understood concepts. (Simon, 1989, p. 376)From the sketch material still in existence, from the condition of the fragments, and from the autographs themselves we can draw definite conclusions about Mozart's creative process. To invent musical ideas he did not need any stimulation; they came to his mind "ready-made" and in polished form. In contrast to Beethoven, who made numerous attempts at shaping his musical ideas until he found the definitive formulation of a theme, Mozart's first inspiration has the stamp of finality. Any Mozart theme has completeness and unity; as a phenomenon it is a Gestalt. (Herzmann, 1964, p. 28)Great artists enlarge the limits of one's perception. Looking at the world through the eyes of Rembrandt or Tolstoy makes one able to perceive aspects of truth about the world which one could not have achieved without their aid. Freud believed that science was adaptive because it facilitated mastery of the external world; but was it not the case that many scientific theories, like works of art, also originated in phantasy? Certainly, reading accounts of scientific discovery by men of the calibre of Einstein compelled me to conclude that phantasy was not merely escapist, but a way of reaching new insights concerning the nature of reality. Scientific hypotheses require proof; works of art do not. Both are concerned with creating order, with making sense out of the world and our experience of it. (Storr, 1993, p. xii)The importance of self-esteem for creative expression appears to be almost beyond disproof. Without a high regard for himself the individual who is working in the frontiers of his field cannot trust himself to discriminate between the trivial and the significant. Without trust in his own powers the person seeking improved solutions or alternative theories has no basis for distinguishing the significant and profound innovation from the one that is merely different.... An essential component of the creative process, whether it be analysis, synthesis, or the development of a new perspective or more comprehensive theory, is the conviction that one's judgment in interpreting the events is to be trusted. (Coopersmith, 1967, p. 59)In the daily stream of thought these four different stages [preparation; incubation; illumination or inspiration; and verification] constantly overlap each other as we explore different problems. An economist reading a Blue Book, a physiologist watching an experiment, or a business man going through his morning's letters, may at the same time be "incubating" on a problem which he proposed to himself a few days ago, be accumulating knowledge in "preparation" for a second problem, and be "verifying" his conclusions to a third problem. Even in exploring the same problem, the mind may be unconsciously incubating on one aspect of it, while it is consciously employed in preparing for or verifying another aspect. (Wallas, 1926, p. 81)he basic, bisociative pattern of the creative synthesis [is] the sudden interlocking of two previously unrelated skills, or matrices of thought. (Koestler, 1964, p. 121)11) The Earliest Stages in the Creative Process Involve a Commerce with DisorderEven to the creator himself, the earliest effort may seem to involve a commerce with disorder. For the creative order, which is an extension of life, is not an elaboration of the established, but a movement beyond the established, or at least a reorganization of it and often of elements not included in it. The first need is therefore to transcend the old order. Before any new order can be defined, the absolute power of the established, the hold upon us of what we know and are, must be broken. New life comes always from outside our world, as we commonly conceive that world. This is the reason why, in order to invent, one must yield to the indeterminate within him, or, more precisely, to certain illdefined impulses which seem to be of the very texture of the ungoverned fullness which John Livingston Lowes calls "the surging chaos of the unexpressed." (Ghiselin, 1985, p. 4)New life comes always from outside our world, as we commonly conceive our world. This is the reason why, in order to invent, one must yield to the indeterminate within him, or, more precisely, to certain illdefined impulses which seem to be of the very texture of the ungoverned fullness which John Livingston Lowes calls "the surging chaos of the unexpressed." Chaos and disorder are perhaps the wrong terms for that indeterminate fullness and activity of the inner life. For it is organic, dynamic, full of tension and tendency. What is absent from it, except in the decisive act of creation, is determination, fixity, and commitment to one resolution or another of the whole complex of its tensions. (Ghiselin, 1952, p. 13)[P]sychoanalysts have principally been concerned with the content of creative products, and with explaining content in terms of the artist's infantile past. They have paid less attention to examining why the artist chooses his particular activity to express, abreact or sublimate his emotions. In short, they have not made much distinction between art and neurosis; and, since the former is one of the blessings of mankind, whereas the latter is one of the curses, it seems a pity that they should not be better differentiated....Psychoanalysis, being fundamentally concerned with drive and motive, might have been expected to throw more light upon what impels the creative person that in fact it has. (Storr, 1993, pp. xvii, 3)A number of theoretical approaches were considered. Associative theory, as developed by Mednick (1962), gained some empirical support from the apparent validity of the Remote Associates Test, which was constructed on the basis of the theory.... Koestler's (1964) bisociative theory allows more complexity to mental organization than Mednick's associative theory, and postulates "associative contexts" or "frames of reference." He proposed that normal, non-creative, thought proceeds within particular contexts or frames and that the creative act involves linking together previously unconnected frames.... Simonton (1988) has developed associative notions further and explored the mathematical consequences of chance permutation of ideas....Like Koestler, Gruber (1980; Gruber and Davis, 1988) has based his analysis on case studies. He has focused especially on Darwin's development of the theory of evolution. Using piagetian notions, such as assimilation and accommodation, Gruber shows how Darwin's system of ideas changed very slowly over a period of many years. "Moments of insight," in Gruber's analysis, were the culminations of slow long-term processes.... Finally, the information-processing approach, as represented by Simon (1966) and Langley et al. (1987), was considered.... [Simon] points out the importance of good problem representations, both to ensure search is in an appropriate problem space and to aid in developing heuristic evaluations of possible research directions.... The work of Langley et al. (1987) demonstrates how such search processes, realized in computer programs, can indeed discover many basic laws of science from tables of raw data.... Boden (1990a, 1994) has stressed the importance of restructuring the problem space in creative work to develop new genres and paradigms in the arts and sciences. (Gilhooly, 1996, pp. 243-244; emphasis in original)Historical dictionary of quotations in cognitive science > Creativity
-
18 Language
Philosophy is written in that great book, the universe, which is always open, right before our eyes. But one cannot understand this book without first learning to understand the language and to know the characters in which it is written. It is written in the language of mathematics, and the characters are triangles, circles, and other figures. Without these, one cannot understand a single word of it, and just wanders in a dark labyrinth. (Galileo, 1990, p. 232)It never happens that it [a nonhuman animal] arranges its speech in various ways in order to reply appropriately to everything that may be said in its presence, as even the lowest type of man can do. (Descartes, 1970a, p. 116)It is a very remarkable fact that there are none so depraved and stupid, without even excepting idiots, that they cannot arrange different words together, forming of them a statement by which they make known their thoughts; while, on the other hand, there is no other animal, however perfect and fortunately circumstanced it may be, which can do the same. (Descartes, 1967, p. 116)Human beings do not live in the object world alone, nor alone in the world of social activity as ordinarily understood, but are very much at the mercy of the particular language which has become the medium of expression for their society. It is quite an illusion to imagine that one adjusts to reality essentially without the use of language and that language is merely an incidental means of solving specific problems of communication or reflection. The fact of the matter is that the "real world" is to a large extent unconsciously built on the language habits of the group.... We see and hear and otherwise experience very largely as we do because the language habits of our community predispose certain choices of interpretation. (Sapir, 1921, p. 75)It powerfully conditions all our thinking about social problems and processes.... No two languages are ever sufficiently similar to be considered as representing the same social reality. The worlds in which different societies live are distinct worlds, not merely the same worlds with different labels attached. (Sapir, 1985, p. 162)[A list of language games, not meant to be exhaustive:]Giving orders, and obeying them- Describing the appearance of an object, or giving its measurements- Constructing an object from a description (a drawing)Reporting an eventSpeculating about an eventForming and testing a hypothesisPresenting the results of an experiment in tables and diagramsMaking up a story; and reading itPlay actingSinging catchesGuessing riddlesMaking a joke; and telling itSolving a problem in practical arithmeticTranslating from one language into anotherLANGUAGE Asking, thanking, cursing, greeting, and praying-. (Wittgenstein, 1953, Pt. I, No. 23, pp. 11 e-12 e)We dissect nature along lines laid down by our native languages.... The world is presented in a kaleidoscopic flux of impressions which has to be organized by our minds-and this means largely by the linguistic systems in our minds.... No individual is free to describe nature with absolute impartiality but is constrained to certain modes of interpretation even while he thinks himself most free. (Whorf, 1956, pp. 153, 213-214)We dissect nature along the lines laid down by our native languages.The categories and types that we isolate from the world of phenomena we do not find there because they stare every observer in the face; on the contrary, the world is presented in a kaleidoscopic flux of impressions which has to be organized by our minds-and this means largely by the linguistic systems in our minds.... We are thus introduced to a new principle of relativity, which holds that all observers are not led by the same physical evidence to the same picture of the universe, unless their linguistic backgrounds are similar or can in some way be calibrated. (Whorf, 1956, pp. 213-214)9) The Forms of a Person's Thoughts Are Controlled by Unperceived Patterns of His Own LanguageThe forms of a person's thoughts are controlled by inexorable laws of pattern of which he is unconscious. These patterns are the unperceived intricate systematizations of his own language-shown readily enough by a candid comparison and contrast with other languages, especially those of a different linguistic family. (Whorf, 1956, p. 252)It has come to be commonly held that many utterances which look like statements are either not intended at all, or only intended in part, to record or impart straightforward information about the facts.... Many traditional philosophical perplexities have arisen through a mistake-the mistake of taking as straightforward statements of fact utterances which are either (in interesting non-grammatical ways) nonsensical or else intended as something quite different. (Austin, 1962, pp. 2-3)In general, one might define a complex of semantic components connected by logical constants as a concept. The dictionary of a language is then a system of concepts in which a phonological form and certain syntactic and morphological characteristics are assigned to each concept. This system of concepts is structured by several types of relations. It is supplemented, furthermore, by redundancy or implicational rules..., representing general properties of the whole system of concepts.... At least a relevant part of these general rules is not bound to particular languages, but represents presumably universal structures of natural languages. They are not learned, but are rather a part of the human ability to acquire an arbitrary natural language. (Bierwisch, 1970, pp. 171-172)In studying the evolution of mind, we cannot guess to what extent there are physically possible alternatives to, say, transformational generative grammar, for an organism meeting certain other physical conditions characteristic of humans. Conceivably, there are none-or very few-in which case talk about evolution of the language capacity is beside the point. (Chomsky, 1972, p. 98)[It is] truth value rather than syntactic well-formedness that chiefly governs explicit verbal reinforcement by parents-which renders mildly paradoxical the fact that the usual product of such a training schedule is an adult whose speech is highly grammatical but not notably truthful. (R. O. Brown, 1973, p. 330)he conceptual base is responsible for formally representing the concepts underlying an utterance.... A given word in a language may or may not have one or more concepts underlying it.... On the sentential level, the utterances of a given language are encoded within a syntactic structure of that language. The basic construction of the sentential level is the sentence.The next highest level... is the conceptual level. We call the basic construction of this level the conceptualization. A conceptualization consists of concepts and certain relations among those concepts. We can consider that both levels exist at the same point in time and that for any unit on one level, some corresponding realizate exists on the other level. This realizate may be null or extremely complex.... Conceptualizations may relate to other conceptualizations by nesting or other specified relationships. (Schank, 1973, pp. 191-192)The mathematics of multi-dimensional interactive spaces and lattices, the projection of "computer behavior" on to possible models of cerebral functions, the theoretical and mechanical investigation of artificial intelligence, are producing a stream of sophisticated, often suggestive ideas.But it is, I believe, fair to say that nothing put forward until now in either theoretic design or mechanical mimicry comes even remotely in reach of the most rudimentary linguistic realities. (Steiner, 1975, p. 284)The step from the simple tool to the master tool, a tool to make tools (what we would now call a machine tool), seems to me indeed to parallel the final step to human language, which I call reconstitution. It expresses in a practical and social context the same understanding of hierarchy, and shows the same analysis by function as a basis for synthesis. (Bronowski, 1977, pp. 127-128)t is the language donn eґ in which we conduct our lives.... We have no other. And the danger is that formal linguistic models, in their loosely argued analogy with the axiomatic structure of the mathematical sciences, may block perception.... It is quite conceivable that, in language, continuous induction from simple, elemental units to more complex, realistic forms is not justified. The extent and formal "undecidability" of context-and every linguistic particle above the level of the phoneme is context-bound-may make it impossible, except in the most abstract, meta-linguistic sense, to pass from "pro-verbs," "kernals," or "deep deep structures" to actual speech. (Steiner, 1975, pp. 111-113)A higher-level formal language is an abstract machine. (Weizenbaum, 1976, p. 113)Jakobson sees metaphor and metonymy as the characteristic modes of binarily opposed polarities which between them underpin the two-fold process of selection and combination by which linguistic signs are formed.... Thus messages are constructed, as Saussure said, by a combination of a "horizontal" movement, which combines words together, and a "vertical" movement, which selects the particular words from the available inventory or "inner storehouse" of the language. The combinative (or syntagmatic) process manifests itself in contiguity (one word being placed next to another) and its mode is metonymic. The selective (or associative) process manifests itself in similarity (one word or concept being "like" another) and its mode is metaphoric. The "opposition" of metaphor and metonymy therefore may be said to represent in effect the essence of the total opposition between the synchronic mode of language (its immediate, coexistent, "vertical" relationships) and its diachronic mode (its sequential, successive, lineal progressive relationships). (Hawkes, 1977, pp. 77-78)It is striking that the layered structure that man has given to language constantly reappears in his analyses of nature. (Bronowski, 1977, p. 121)First, [an ideal intertheoretic reduction] provides us with a set of rules"correspondence rules" or "bridge laws," as the standard vernacular has it-which effect a mapping of the terms of the old theory (T o) onto a subset of the expressions of the new or reducing theory (T n). These rules guide the application of those selected expressions of T n in the following way: we are free to make singular applications of their correspondencerule doppelgangers in T o....Second, and equally important, a successful reduction ideally has the outcome that, under the term mapping effected by the correspondence rules, the central principles of T o (those of semantic and systematic importance) are mapped onto general sentences of T n that are theorems of Tn. (P. Churchland, 1979, p. 81)If non-linguistic factors must be included in grammar: beliefs, attitudes, etc. [this would] amount to a rejection of the initial idealization of language as an object of study. A priori such a move cannot be ruled out, but it must be empirically motivated. If it proves to be correct, I would conclude that language is a chaos that is not worth studying.... Note that the question is not whether beliefs or attitudes, and so on, play a role in linguistic behavior and linguistic judgments... [but rather] whether distinct cognitive structures can be identified, which interact in the real use of language and linguistic judgments, the grammatical system being one of these. (Chomsky, 1979, pp. 140, 152-153)23) Language Is Inevitably Influenced by Specific Contexts of Human InteractionLanguage cannot be studied in isolation from the investigation of "rationality." It cannot afford to neglect our everyday assumptions concerning the total behavior of a reasonable person.... An integrational linguistics must recognize that human beings inhabit a communicational space which is not neatly compartmentalized into language and nonlanguage.... It renounces in advance the possibility of setting up systems of forms and meanings which will "account for" a central core of linguistic behavior irrespective of the situation and communicational purposes involved. (Harris, 1981, p. 165)By innate [linguistic knowledge], Chomsky simply means "genetically programmed." He does not literally think that children are born with language in their heads ready to be spoken. He merely claims that a "blueprint is there, which is brought into use when the child reaches a certain point in her general development. With the help of this blueprint, she analyzes the language she hears around her more readily than she would if she were totally unprepared for the strange gabbling sounds which emerge from human mouths. (Aitchison, 1987, p. 31)Looking at ourselves from the computer viewpoint, we cannot avoid seeing that natural language is our most important "programming language." This means that a vast portion of our knowledge and activity is, for us, best communicated and understood in our natural language.... One could say that natural language was our first great original artifact and, since, as we increasingly realize, languages are machines, so natural language, with our brains to run it, was our primal invention of the universal computer. One could say this except for the sneaking suspicion that language isn't something we invented but something we became, not something we constructed but something in which we created, and recreated, ourselves. (Leiber, 1991, p. 8)Historical dictionary of quotations in cognitive science > Language
-
19 protective class I
класс I
К классу I должны относиться изделия, имеющие по крайней мере рабочую изоляцию и элемент для заземления. В случае, если изделие класса I имеет провод для присоединения к источнику питания, этот провод должен иметь заземляющую жилу и вилку с заземляющим контактом.
[ ГОСТ 12.2.007.0-75]EN
protective class I
equipment in which protection against electric shock does not rely on basic insulation only, but which includes an additional safety precaution in such a way that means are provided for the connection of accessible conductive parts to the protective (earthing) conductor in the fixed wiring of the installation in such a way that accessible conductive parts cannot become live in the event of a failure of the basic insulation
[IEC 62103, ed. 1.0 (2003-07)]FR
matériel de la classe I
matériel dans lequel la protection contre les chocs électriques ne repose pas uniquement sur l'isolation principale, mais qui comporte une mesure de sécurité supplémentaire sous la forme de moyen de raccordement des parties conductrices accessibles à un conducteur de protection mis à la terre, faisant partie du câblage fixe de l'installation, d'une manière telle que des parties conductrices accessibles ne puissent devenir dangereuses en cas de défaut de l'isolation principale
[IEC 62103, ed. 1.0 (2003-07)]Тематики
Синонимы
EN
FR
Англо-русский словарь нормативно-технической терминологии > protective class I
-
20 in
in accordance with 1. в соответствии сin accordance with good practice в соответствии с принятой / установившейся практикой 2. руководствуясь чем-л.in addition to that вместе с темin advance 1. заранее; заблаговременноSupplier shall notify the Contractor sufficiently in advance of any fabricating operations Обо всех производственных операциях Поставщик заблаговременно извещает Подрядчика 2. авансом (т.е. "вперед", в отличие от in arrears- см.)in all ways 1. во всех отношениях 2. с любой точки зренияin analysis based on limit load при расчете по предельным нагрузкамin anticipation 1. исподволь 2. заблаговременноin arrears по факту (т.е. по истечении какого-то времени, «потом», в отличие от in advance - см)in attendance Those in attendance included Присутствовали:...in basic terms вообще говоря; в общем и целом; как правилоin block letters печатными буквамиin the blueprint stage в стадии проектирования (перен. в стадии планирования, "на бумаге"; в отличие от in the hardware stage - см.)in bulk quantities в товарных количествахin case a (the)seal is disturbed при нарушении пломбыin case of eye contact при попадании в глаза (опасного / вредного вещества /материала)in case of ingestion при попадании внутрь (опасного / вредного вещества /материала)in case of inhalation при вдыхании (опасного / вредного вещества / материала)in case of respiratory standstill при остановке дыханияin case of skin contact при попадании на кожу (опасного /вредного вещества /материала)in case of swallowing при проглатывании (опасного /вредного вещества /материала)in the clear: be sure all personnel are in the clear убедиться в том, что весь персонал находится в безопасности (т.е. вне опасности, на безопасном расстоянии и т.д.)in codex form в форме книгиin compliance with по (напр., нормам, ТУ и т.д.);in compliance with your request по Вашей просьбеin conclusion, В заключение...in a condensed form в сжатой формеin conflict with: In conflict with this is... ( в начале предлож.) В то же время...; Вместе с тем...in conformance to по (напр., нормам, ТУ и т.д.)in conjunction with 1. параллельно сIn conjunction with an increase in rate, the tube position corresponding to... is located farther upstream Параллельно с увеличением скорости [ осадкообразования] сечение на трубке, соответствующее..., смещается все выше по потоку 2. одновременно с 3. в сочетании сin connection with 1. в свете... 2. в контексте чего-л. 3. in connection with Fig. 13... Если обратиться к рис. 13...in consideration of 1. принимая во внимание 2. учитываяin a conspicuous location на видном местеin a conspicuous place на видном местеin a conspicuous position на видном местеin consultation with по согласованию с; по договоренности сin contemplation of в преддверии чего-л.;in contemplation of our upcoming meeting в преддверии нашей предстоящей встречиin the context of 1. в связи с; в свете; в плане 2. применительно к 3. если иметь в виду; с учетом 4. на примере 5. с точки зрения 6. в случае 7. в отношении 8. в области 9. в рамкахin continuation of в развитие чего-л.in contradiction with противоречащий чему-л.if this is not in contradiction with если это не противоречит...in contrast (npomueum.) 1. жеIn contrast, the algorithm presented here... Предлагаемый же здесь метод... 2. что же касается...These studies have concentrated in the upper water layers... In contrast, rather little detailed work seems to have been undertaken in the very deepest parts of the[ Caspian] Sea Эти исследования проводились в основном в верхних слоях воды... Что же касается самых глубоких участков [ Каспийского] моря, то там, похоже, практически не проводилось сколько-нибудь детальных исследовательских работin contrast to в отличие от; в то время как; что же касаетсяin control не выходящий за установленные предельные значения (напр., о размерах, механических свойствах, технологических параметрах и т.д.)in a controlled manner организованноthe practice of burning off waste gas in a controlled manner установившаяся / принятая практика организованного сжигания сбросного газа [ в факеле]in a criss-cross pattern по перекрестной схеме ( затяжка болтов - для обеспечения равномерной затяжки)in a customary manner обычным способом; по обычной схеме; тривиальноA shall be determined in a customary manner А определяется обычным путем / по обычной схеме / тривиальноin a design situation при проектированииin diction словами; на обычном языке; открытым текстом (т.е. не кодом)in a direction parallel to по ходу (напр., трубопровода)in document format отдельным изданиемin domestic experience в отечественной практикеin due time в установленные сроки; своевременноin effect по существуin either direction в любом направленииin either direction parallel to the piping run в любом направлении по ходу трубопроводаwell in excess заведомо больше; с избыткомin excess of 1. не укладывающийся в 2. сверх чего-л.weld material in excess of the specified weld size избыток материала сварного шва сверх установленного размераin an expedient manner оперативноin fact более того,...in force действующий (напр., законодательство, договор и т.д.)in the field на монтаже ( а не па заводе или на производстве)in the first place вообщеin foreseeable future в обозримом будущемin formative stage в стадии становленияin free format в произвольном видеin full detail исчерпывающе; исчерпывающим образом; исчерпывающе подробно; с исчерпывающей полнотойin full standing полноправныйin full view в пределах прямой видимости (зд. «прямо» означает не впереди, перед, а незаслоненный, незагороженный)in furtherance of в продолжение чего-л.;in furtherance of our talks в продолжение нашего разговораin furtherance to в развитие чего-л.;in furtherance to your letter dated01.15.2004 в развитие Вашего письма от 15.01.2004 г.in general: A does not in general correspond to В А не всегда соответствует Вin general terms вообще говоряin the generic sense собирательноin good order в полной исправности; в исправном рабочем состоянии;in good working order в исправном рабочем состоянииin good standing полноправныйin a gradual manner плавно;pre-heat shall be applied in a gradual and uniform manner подогрев производится плавно и равномерноin greater detail намного / гораздо полнееquantity in hand наличные запасы;work in hand намеченная к выполнению работа; запланированная работа; заданная работаin hidden form (матем.) в неявном виде; в неявной формеin the initial stages на первых порахin isolation автономноin the judgment of по мнениюin line with 1. в увязке сin line with overall project requirements в увязке с потребностями проекта в целом 2. (перен.) в русле чего-л. 3. вдоль чего-л. 4. соосно с чем-л. 5. параллельно чему-л.in the long run в перспективеin a... manner: in a gradual and uniform manner плавно и равномерноin a masterful way мастерскиThe problem has been dealt with in a masterful way Поставленная задача решена мастерскиin the mean в обычном смыслеin the melting-pot: be in the melting-pot находиться в стадии решения / принятия решенияin a modification в другом исполненииin multiples of в количествеin the near term в краткосрочной перспективеin need of нуждающийся в чем-л.;those found to be in need of assistance те, кто определенно нуждаются в помощиin no case ни при каких обстоятельствахin a non-discriminative manner непредвзятоin no time в сжатые срокиin no way никоим образом неThe signing of this document by a Company agent shall in no way relieve the Manufacturer of any responsibility for Визирование / Факт подписания настоящего документа представителем Компании никоим образом не освобождает Поставщика от ответственности за;Inspection by the Contractor in no way relieves the Supplier of his responsibility to meet the requirements of... Проведение / Факт проведения контроля Подрядчиком никоим образом не освобождает Поставщика от ответственности за выполнение требований...in operation задействованный;which may fluctuate due to the number of fire water hydrants in operation который может колебаться в зависимости от числа задействованных пожарных гидрантовin an orderly manner организованно; в организованном порядкеin outline в общих чертахin one's own element в своей сфереin one's own milieu в своей сфереin particular в первую очередь; прежде всегоin passing заметим в скобках; заметим попутно; между прочимin person личноin place:1) be in place 1. иметь наготове; представлять (документы, согласования и т.д.) 2. (описат.) используемый (реально, фактически)2) have in place располагать (чем-л.)3) put in place 1. внедрять; вводить в действие; внедрять в практику 2. реализовывать 3. выполнять ( фактически); осуществлять 4. задействовать; (перен..) запускать (напр., процесс перехода на новый материал)in point:1) case in point характерный пример; образчик; эпизод2) tool in point подходящее / нужное / соответствующее средствоin the present circumstances 1. в данном случае 2. в этих условияхin print;Books in print (КВП) "Книги, имеющиеся в продаже" (а не в печати!)Since work is still in progress to define А Поскольку работа по определению А еще не завершена,...in pursuance of: 1. следуя (напр., нашему плану) 2. in pursuance of your letter dated01.15.2004 в связи с Вашим письмом от 15.01.2004 г.; в контексте Вашего письма от 15.01.2004 г. 3. in pursuance of your orders во исполнение Ваших указанийin pursuance to в ответ на;in pursuance to your letter в ответ на Ваше письмоin question рассматриваемыйin receipt of: We are in receipt of your letter dated Мы получили Ваше письмо от...in recent years в последние годыin recognition of 1. отдавая должное 2. принимая во внимание 3. с учетомin reference: in reference to your inquiry dated На Ваш запрос от...in this regard (синон. in this context) в этой связиin response of в соответствии с;in response of A comments against В в соответствии с замечаниями А по Вin response to в соответствии с;in response to crew comments against B1 unit в соответствии с замечаниями экипажа по блоку В1;in retaliation в отместку за что-л.in retrospect задним числомin routine use in: be in routine use in обычно используется вin running order годный к пуску (напр., блок электростанции)in a sense в известном смыслеin a short time в недалеком будущемin situ на своем местеin so far as коль скороin some instances... and in others в одних случаях..., а в других случаяхin some locations..., in other (locations) в одних местах..., в других...in spurts скачкообразный (напр., о росте трещины)in step with по мере (увеличения, уменьшения, роста, снижения, и т.д.];in step with the growth in GDP по мере роста / увеличения валового внутреннего продуктаin substitution to взамен чего-л. (напр., выдавать доработанный чертеж: проекта вместо другого, предыдущего)in summary в общем (и целом)in terms of (ЛДП) 1. в плане чего-л.; в части чего-л. 2. если говорить о 3. (матем.) относительноA can be written in terms of stress, displacement... А можно записать относительно напряжений, перемещений... 4. с точки зренияThe processes that... have been evaluated in terms of the reduction of total reactive nitrogen Процессы, которые..., оценивали с точки зрения снижения концентрации общего реакцион-носпособного азота 5. по...These zones were examined separately in terms of how they influenced the exhaust level of NOx Параметры каждой из этих зон исследовали раздельно по их влиянию на интенсивность образованияNOx 6. в вопросах... 7. в пересчете на 8. в соответствииin this context 1. здесь; в этом / данном случае; в этом смысле 2. в данной ситуации; в такой ситуации 3. в этой связи; в связи с этим 4. при этом условии 5. при такой постановке 6. в рамках; в светеin this instance А если это так, то; А раз это так, тоin a timely manner оперативноBureau of Land Management will make every effort to process applications for rights-of-way in a timely manner Управление земплепользования США примет все меры к оперативному рассмотрению заявлений на получение полосы отчуждения / отводаin a tough spot: be in a tough spot находиться / оказаться в затруднительном положенииin a uniform manner равномерноin unique cases в исключительных случаяхin unison параллельно; совместно; в связкеif a load is lifted by two or more trucks working in unison если перевалка груза осуществляется двумя или более самосвалами, работающими в связкеin use 1. принятый (в знач. находящийся в употреблении)standard operating procedure in use within the US обычная методика / обычный порядок работы, принятая / принятый в США 2. находящийся в обороте 3. at the locations where the equipment is in use в тех местах, где эта техника эксплуатируется / используется / задействуетсяin the vicinity of в зоне чего-л.;in the vicinity of fire в зоне огня ( пожара)in view of 1. в связи с; коль скоро; в свете чего-л.; на основании чего-л. in view of the foregoing в связи с вышеизложенным; в свете вышеизложенного; на основании вышеизложенного 2. in view of the fact that в связи с тем, чтоin which case и тогда...in witness whereof в удостоверение чего...in a workmanlike manner квалифицированно; мастерски; "классно"in writing в письменном видеin a wrong place 1. в неположенном месте 2. (разг.) не тамEnglish-Russian dictionary of scientific and technical difficulties vocabulary > in
См. также в других словарях:
Basic English — Basic English, also known as Simple English, is an English based controlled language created (in essence as a simplified subset of English) by linguist and philosopher Charles Kay Ogden as an international auxiliary language, and as an aid for… … Wikipedia
Basic Anxiety — is a term used by the psychologist Karen Horney to explain the ramifications of poor parenting. Basic anxiety is deep insecurity and fear that have developed in the child because of the way they were treated by their parents. It is developed… … Wikipedia
basic award — Under the Employment Rights Act 1996, compensation in an industrial tribunal for unfair dismissal may be composed of (1) a basic award based on a set formula according to age and years worked which can be increased in the case of failure to… … Law dictionary
Basic Military Qualification — is the recruit training that is undergone to produce non commissioned members of the Canadian Forces. It is designed to introduce ordinary citizens of Canada to the CF way of life by indoctrination of CF values, weapons training, first aid,… … Wikipedia
Basic Instinct — This article is about the 1992 film. For the Ciara album, see Basic Instinct (album). For Nick Curran the musician, see Nick Curran (musician). For other uses, see Basic Instinct (disambiguation). Basic Instinct Theatrical release poster … Wikipedia
Basic Roman spelling of English — The Basic Roman spelling of English is a 2002 proposal for English spelling regularity [L.L. Ivanov, [http://members.lycos.co.uk/rre/Romanization.html On the Romanization of Bulgarian and English] , Contrastive Linguistics, XXVIII, 2003, 2, pp.… … Wikipedia
Way of the Samurai — For the samurai code of conduct, see Bushido. Infobox VG title = Way of the Samurai caption = developer = Acquire publisher = Spike (JP) BAM! Entertainment (NA) Eidos Interactive (PAL) designer = engine = version = released =… … Wikipedia
Basic income — A basic income is a proposed system of social security, that periodically provides each citizen with a sum of money that is sufficient to live on. Except for citizenship, a basic income is entirely unconditional. Furthermore, there is no means… … Wikipedia
Basic Instinct 2 — Infobox Film name = Basic Instinct 2 caption = Theatrical poster for Basic Instinct 2 writer = Leora Barish Henry Bean starring = Sharon Stone David Morrissey David Thewlis Flora Montgomery director = Michael Caton Jones cinematography = Gyula… … Wikipedia
Basic block — In computing, a basic block is code that has one entry point (i.e., no code within it is the destination of a jump instruction), one exit point and no jump instructions contained within it. The start of a basic block may be jumped to from more… … Wikipedia
Basic structure — The basic structure doctrine is the judge made principle that certain features of the Constitution of India are beyond the limit of the powers of amendment of the Indian parliament[1]. The doctrine, which was first expressed by the Indian Supreme … Wikipedia